期刊文献+

经验小波变换及其在机械故障盲分离中的应用 被引量:4

The Empirical Wavelet Transform and its Application in Mechanical Fualt Blind Source Separation
下载PDF
导出
摘要 提出了一种基于经验小波变换针对非线性、非平稳混合信号的单通道盲源分离方法,并应用于机械设备故障诊断中。该方法拟采用EMD-SVD-BIC估计源数,以确定经验小波变换中频谱分割边界的个数N,再将经验小波变换用于单通道盲源分离,从而进行欠定条件下多故障的分离与诊断。利用该方法对仿真信号和单通道轴承振动信号进行了分析,结果表明,该方法能够有效地将不同故障的源信号分离出来,并准确提取出机械的故障特征。 A new single blind separation method based on empirical wavelet transform(EWT)for the non-linear and nonstationary mixed signal is proposed in this paper,and it is applied to the mechanical equipment fault diagnosis.The EMDSVD-BIC method is employed to estimate the number of source signals,which is equals to the number of the spectrum segmentation boundary in EWT.Then,the EWT is utilized to the separation of mixed faults in the condition of single channel.The proposed method was applied to the analysis of numerical simulation signal and measured single channel bearing mixed fault signal.The results show that the proposed method can effectively separate different fault source signals,and can also accurately extract the mechanical fault characteristics.
作者 吴加福 吴安定 肖涵 WU Jia-fu;WU An-ding;XIAO Han(Wenzhou Special Equipment Inspection and Research Institute,Zhejiang Wenzhou 325000,China;Wuhan University of Science and Technology,Hubei Wuhan 430081,China)
出处 《机械设计与制造》 北大核心 2020年第10期89-93,共5页 Machinery Design & Manufacture
基金 国家自然科学基金:(51475339) 温州市质监系统科研计划项目(201709)。
关键词 经验小波变换 盲源分离 源数估计 频谱边界个数 EmpiricalWavelet Transform Blind Source Separation Number of Source Estimation Spectral Boundary Number
  • 相关文献

参考文献5

二级参考文献49

  • 1胡劲松,杨世锡,吴昭同,严拱标.基于EMD和HT的旋转机械振动信号时频分析[J].振动.测试与诊断,2004,24(2):106-110. 被引量:48
  • 2葛楠,刘月辉.独立分量分析在内燃机噪声信号分离中的应用[J].天津大学学报,2006,39(4):454-457. 被引量:9
  • 3Colas M,Gelle G.Blind souce separation:a tool for rotating machine monitoring by vibration analysis?[J].Sound and Vibration,2001,248(5):865-885.
  • 4Gelle G,Colas M,Servière C.Blind source separation:a new pre-processing tool for rotating machines monitoring?[J].IEEE Transactions on Instrumentation and Measurement,2003,52(3):790-795.
  • 5Aouada S,Zoubir A M,See C M S.A comparative study on source number detection[C] ∥ Proceedings Seventh International Symposium on Signal Processing and Its Applications.Paris,France:[s.n.] ,2003,1:173-176.
  • 6Wu H T,Yang J F,Chen F K.Source number estimators using transformed Gerschgorin radii[J].Signal Processing,IEEE Transactions on Acoustics,Speech,and Signal Processing,1995,43(6):1325-1333.
  • 7Yamamoto K,Asano F,Rooijen W F G,et al.Estimation of the number of sound sources using support vector machines and its application to sound source separation[C] ∥ IEEE International Conference on Acoustics,Speech,and Signal Processing.Hongkong:[s.n.] ,2003:485-488.
  • 8Zhang Qingchun,Feng Zhenghe.A novel source number estimator without complete eigendecomposition[C] ∥ The 8th International Conference on Signal Processing.Guiling,China:[s.n.] ,2006.
  • 9Nguyen L T,Belouchrani A,Meraim K A,et al.separating more sources than sensors using time-frequency distributions[C] ∥ Proceedings of the International Symposium on Signal Processing and its Applications.Kuala Lumpur,Malaysia:[s.n.] ,2001:583-586.
  • 10Yilmaz O,Rickard S.Blind separation of speech mixtures via time-frequency masking[J].Signal Processing,2004,52(7):1830-1847.

共引文献47

同被引文献35

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部