摘要
本文考虑一个附有不可靠服务台和无等待能力的M/G/1/1排队系统模型.第一步指出此M/G/1/1排队系统的主算子生成一个正定压缩C0-半群T(t),并证明所生成的正定压缩C0-半群T(t)的拟紧性。接着推出虚轴上除了点0外的其他的全部点都属于此M/G/1/1排队模型所对应主算子的豫解集。最后通过上述结果得到该M/G/1/1排队系统模型的动态解强收敛到该M/G/1/1排队系统的稳态解。
We consider an M/G/1/1 queueing model with unreliable server and no waiting capacity in this paper.Firstly we show that the underlying operator corresponding to the M/G/1/1 queueing model generates a positive contraction C 0-semigroup T(t)and verify that T(t)is a quasi-compact operator.Next,we derive that the imaginary axis points beside zero belongs to the corresponding operator s resolvent set.Thus,by these above results we conclude that the nonnegative time-dependent solution of the M/G/1/1 queueing system converges strongly to the steady-state solution of the system.
作者
阿力木·米吉提
奥古丽江·艾尼
Alim MIJIT;Oghuljan AINI(Xinjiang Radio&TV University,Urumqi 830049,China;No.2 Middle School of Urumqi,Urumqi 830000,China)
出处
《安徽师范大学学报(自然科学版)》
CAS
2020年第5期415-423,共9页
Journal of Anhui Normal University(Natural Science)
基金
国家开放大学课题项目(G18E4302Y).