摘要
对半无限柱体区域中的多孔介质中的两种相互作用的B rinkman-Forchheimer流与Darcy流进行研究.通过构造一个加权的能量表达式,得到该表达式所满足的微分不等式,然后通过求解该不等式得到解的空间衰减估计结果.这个结果可看作圣维南原则的一个应用.
We study the Brinkman-Forchheimer equations interfacing with a Forchheimer fluid in a semi-infinite cylinder in a porous medium.We define a weighted energy expression,and get the expression satisfying a differential inequality,then we can get the spatial decay estimates result for the solutions by solving this inequality.The result can be seen as version of Saint-Venant’s principle.
作者
石金诚
梁劲驹
肖胜中
SHI Jin-cheng;LIANG Jin-ju;XIAO Sheng-zhong(Huashang College Guangdong University of Finance&Economics,Guangzhou 511300,China;Department of Applied Mathematics,Guangdong University of Finance,Guangzhou 510521,China;Guangdong AIB Polytechnic College,Guangzhou 510507,China)
出处
《数学的实践与认识》
北大核心
2020年第17期169-180,共12页
Mathematics in Practice and Theory
基金
广东财经大学华商学院校内导师制项目(2019HSDS28)。