期刊文献+

Nanohollow Carbon for Rechargeable Batteries:Ongoing Progresses and Challenges 被引量:1

下载PDF
导出
摘要 Among the various morphologies of carbon-based materials,hollow carbon nanostructures are of particular interest for energy storage.They have been widely investigated as electrode materials in different types of rechargeable batteries,owing to their high surface areas in association with the high surface-to-volume ratios,controllable pores and pore size distribution,high electrical conductivity,and excellent chemical and mechanical stability,which are beneficial for providing active sites,accelerating electrons/ions transfer,interacting with electrolytes,and giving rise to high specific capacity,rate capability,cycling ability,and overall electrochemical performance.In this overview,we look into the ongoing progresses that are being made with the nanohollow carbon materials,including nanospheres,nanopolyhedrons,and nanofibers,in relation to their applications in the main types of rechargeable batteries.The design and synthesis strategies for them and their electrochemical performance in rechargeable batteries,including lithium-ion batteries,sodium-ion batteries,potassium-ion batteries,and lithium–sulfur batteries are comprehensively reviewed and discussed,together with the challenges being faced and perspectives for them.
出处 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第12期362-391,共30页 纳微快报(英文版)
基金 This work was supported by the National Natural Science Foundation of China(U1802256,51672128,21773118,21875107,51802154) the Key Research and Development Program in Jiangsu Province(BE2018122) Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).Prof.John Wang and team acknowledge the support by MOE,Singapore Ministry of Education(MOE2018-T2-2-095),for research conducted at the National University of Singapore Mr.Jiangmin Jiang would like to acknowledge the financial support from the Funding of Outstanding Doctoral Dissertation in NUAA(BCXJ19-07) Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX19_0174) China Scholarship Council(201906830060).
  • 相关文献

参考文献7

二级参考文献61

  • 1Winter M., Brodd R. J., Chem. Rev,, 2004, 104, 4245.
  • 2Miller J. R., Simon E, Science, 2008, 321,651.
  • 3Liu C., Li E, Ma L., Cheng H., Adv. Mater., 2010, 22, E28.
  • 4Wen Z., Li J., J. Mater. Chem., 2009, 19, 8707.
  • 5Lee K. T., Jung Y. S., Oh S. M., ,Z Am. Chem. Soc., 2003, 125, 5652.
  • 6Wang Y., Su E, Lee J. Y., Zhao X. S., Chem. Mater., 2006, 18, 1347.
  • 7Han S. G., Yun Y. K., Park K. W., Sang Y. E., Hyeon T., Adv. Mater., 2003, 15, 1922.
  • 8Lei Z., Chen Z., Zhao XI S., J. Phys. Chem. C, 2010, 114, 19867.
  • 9You B., Yang J., Sun Y., SB Q., Chem. Commun., 2011, 47, 12364.
  • 10Zhang L. L., Zhao X. S., Chem. Soe. Rev., 2009, 38, 2520.

共引文献68

同被引文献21

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部