摘要
目的制备具有优异电化学性能的石墨烯/纳米纤维素/二氧化锰复合纤维水系超级电容器。方法采用超声波分散处理制备氧化石墨烯/纳米纤维素/二氧化锰混合纺丝液;运用湿纺纺丝工艺制备氧化石墨烯/纳米纤维素/二氧化锰杂化纤维电极;通过氢碘酸还原和冷冻干燥处理构建具有多孔结构的石墨烯/纳米纤维素/二氧化锰复合纤维电极;最后,将其组装成两电极水系超级电容器。结果在石墨烯/纳米纤维素/二氧化锰复合纤维中,纳米纤维素的添加有效抑制了石墨烯片层的自聚集,并显著提升了复合纤维的亲水性和拉伸强度。二氧化锰的加入显著提升了纤维电极的电化学性能。得益于精心的实验设计,石墨烯/纳米纤维素/二氧化锰复合纤维的拉伸强度为338 MPa。组装后的水系超级电容器具有优异的电容性能和循环稳定性,在电流密度为0.1 mA/cm^2时,面积电容为412.5 mF/cm^2,循环1500次后,电容保持率为87%。结论将切实可行的湿法纺丝策略与精心设计的电极结构相结合,制备的石墨烯/纳米纤维素/二氧化锰水系超级电容器为可穿戴便携式储能设备和智能包装能源供应系统的发展提供了良好的参考。
The work aims to obtain graphene/nanocellulose/manganese dioxide(GE/CNFs/MnO2)composite aqueous fiber supercapacitor with excellent electrochemical performance.The GO/CNFs/MnO2 mixed spinning solution was prepared by ultrasonic dispersion treatment.The wet-spinning strategy was adopted to obtain GO/CNFs/MnO2 composite fiber electrode.Then,the GE/CNFs/MnO2 composite fiber electrodes with the porous structure were constructed by hydroiodic acid and freeze-drying treatment.Finally,the two-electrode aqueous supercapacitor was formed through assembly.In the GE/CNFs/MnO2 composite fibers,the addition of CNFs effectively inhibited the self-aggregation of graphene sheets and significantly improved the hydrophilicity and tensile strength of composite fiber.The addition of MnO2 significantly improved the electrochemical performance of the fiber electrode.Due to careful experimental design,GE/CNFs/MnO2 composite fiber had a tensile strength of 338 MPa.The assembled aqueous supercapacitor had superior capacitance performance and cyclic stability.When the current density was 0.1 mA/cm^2,the area capacitance was 412.5 mF/cm^2,and the capacitance retention rate was 87%after 1500 cycles.GE/CNFs/MnO2 aqueous supercapacitor prepared through practical wet spinning strategy combined with a carefully designed electrode structure provides an excellent reference for the development of wearable portable energy storage devices and intelligent packaging energy supply systems.
作者
滕佑超
魏婧
李大纲
TENG You-chao;WEI Jing;LI Da-gang(Nanjing Forestry University,Nanjing 210037,China)
出处
《包装工程》
CAS
北大核心
2020年第19期82-89,共8页
Packaging Engineering
基金
国家自然科学基金(31670555,31370557)。