期刊文献+

VAD法制备大尺寸芯棒的研究 被引量:1

Research on VAD method of fabricating large size core rod
下载PDF
导出
摘要 为了提高芯棒尺寸并同时保持理想的沉积效率和合格的光学参数,采用气相轴向沉积法对影响芯棒尺寸的主要因素进行研究,优化沉积喷灯数量、包灯SiCl4流量和soot体提升速率。实验结果表明:三喷灯沉积工艺中,增加第一、第二包灯SiCl4原料流量至4.0 slm、5.0 slm且降低提升速率至85 mm/h时,沉积速率显著提高至15.8 g/min,soot体密度增大至0.319 g/cm^3,芯棒尺寸增大至99.1 mm,同时兼顾沉积效率至52.2%,并保持良好的G.652D单模光纤折射率剖面。 In order to increase core rod size and maintain the ideal deposition efficiency and qualified optical parameters,this paper studies the main factors affecting the core rod size by vapor phase axial deposition method.The number of deposition blowtorch,the flow rate of SiCl4 and the lifting rate of soot body are optimized.In the deposition process of three blowtorches,when the flow rate of SiCl4 in the first and second clad blowtorch is increased to 4.0 slm and 5.0 slm,and the lifting rate is reduced to 85 mm/h,the experimental results show that the deposition rate increases to 15.8 g/min,the bulk density of soot body increases to 0.319 g/cm^3,the core rod size increases to 99.1 mm,and the deposition efficiency reaches 52.2%,and the refractive index profile of G.652D single-mode fiber is maintained.
作者 王兵钦 王樯 何炳 蒋锡华 尹中南 梁伟 崔德运 WANG Bingqin;WANG Qiang;HE Bing;JIANG Xihua;YIN Zhongnan;LIANG Wei;CUI Deyun(Jiangsu Tongding Optical Fiber Preform Co.Ltd,Suzhou Jiangsu 215200,China)
出处 《光通信技术》 北大核心 2020年第10期47-52,共6页 Optical Communication Technology
基金 江苏省苏州市科技发展计划(重点产业技术创新)项目(SGC201950)资助。
关键词 气相轴向沉积法 大尺寸芯棒 喷灯数量 SiCl4流量 提升速率 沉积效率 vapor phase axial deposition method large size core rod number of deposition blowtorch SiCl4 flow rate lifting rate deposition efficiency
  • 相关文献

参考文献7

二级参考文献17

  • 1CHO J, CHOI M. Determination of number density, size and morphology of aggregates in coflow diffusion flames using light scattering and local sampling[J]. J Aerosol Sci, 2000,31(9):1077-1095.
  • 2FRIEDLANDER S K. Synthesis of nanoparticle and their agglomerates aerosol reactors[R]. United States: WTEC, 1998. 83-92.
  • 3HONG K H, KANG S H. Three-dimensional analysis of heat transfer and thermophoretic particle deposition in OVD process[J]. J Heat Mass Transfer, 1998,41(10):1339-1346.
  • 4BALABANOVA E. Mechanism of nanoparticle gene-ration by high-temperature methods[A]. 11th International School on Vacuum, Electron and Ion Technologies[C]. 1999.20-25.
  • 5PRATSINIS S E. Flame synthesis of nanosize particles-prescise control of particle size[J]. J Aerosol Sci, 1996,27(Suppl 1): S153-S154.
  • 6LI T Y. Optical fiber communications(Vol 1 Fiber Fabrication)[M]. Orlando: Fla Academic Press, 1985.
  • 7赵梓森.光纤通讯工程[M].北京:人民邮电出版社,1994.12-48.
  • 8Kevin Boll, Jukka Nummela. Large optical fiber drawing furnace developments[C]. The 59th IWCS/ IICIT, Rhode Island, USA, 2010: 335-339.
  • 9Won Sun Lee,Si Ho Song,Dae Seung Moon,et al.Highly efficient cooling unit of glass fiber for high speed optical fiber drawing[C].The 60th IWCS/IIC- IT,North Carolina,USA,2011:338-341.
  • 10P G Simpkins,V J Kuck.On air entrainment in coat- ings[C].Colloid and Interface Science,2003,263:562-571.

共引文献23

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部