期刊文献+

基于第一性原理研究Y掺杂锐钛矿TiO2的磁光性质 被引量:2

Study on the magnetic and optical properties of Y dopedanatase TiO based on first principles
下载PDF
导出
摘要 建立了未掺杂和三种Y掺杂量的锐钛矿TiO2模型,基于第一性原理方法,对各个模型的形成能、磁性、电子结构及吸收光谱进行了计算.结果表明:掺入锐钛矿晶格的不同Y原子之间没有团簇趋势;Y掺杂量越大,实现掺杂所需的能量越高;Y掺杂的锐钛矿体系具有铁磁性,因而晶格中的自旋能级分裂效应能降低锐钛矿的带隙宽度,但当Y掺杂量升高时,这种影响显著减弱;随着Y掺杂量增加,弱束缚的O-2p态电子浓度增加,导致价带顶的O-2p态跨越费米能级,使得带隙值减小,进而提高了改性锐钛矿TiO2对可见光的吸收系数. The anatase TiO2 models with undoped and three Y doping amounts were established. Based on first principle,the formation energy,magnetism,electronic structure and absorption spectrum of all models were calculated. Results showed that there is no cluster trend between different Y atoms doped into the anatase lattice;the larger the Y doping amount,the higher the energy required to achieve doping;Y doped anatase is ferromagnetic,so that the spin-electron band splitting effect in the lattice can reduce the band gap of anatase;but when the Y doping amount increases,this effect is significantly weakened. As the Y doping amount increases,the weakly bound electron concentration of O-2 p states increases,causing the O-2 p state at the valence band maximum to cross the Fermi level,which reduces the band gap and further improves the absorption coefficient for visible light of anatase TiO2.
作者 李聪 张冰 郑友进 付斯年 姜宏伟 LI Cong;ZHANG Bing;ZHENG You-Jin;FU Si-Nian;JIANG Hong-Wei(Heilongjiang Laboratory of New Carbon-base Functional and Superhard Material,Department of Physics,Mudanjiang Norma.University,Mudanjiang 157011,China)
出处 《原子与分子物理学报》 CAS 北大核心 2020年第5期762-767,共6页 Journal of Atomic and Molecular Physics
基金 牡丹江师范学院国家级课题培育项目(GP2019001)。
关键词 Y掺杂量 第一性原理 电子结构 吸收光谱 Y doped TiO2 First-principle Electronic structure Absorption spectrum
  • 相关文献

参考文献3

二级参考文献45

  • 1侯莉,孙佳佳,刘宽,盛义平,宋来洲,高发明.Fe^(3+)掺杂TiO_2溶胶-凝胶法合成及其光催化性能研究[J].硅酸盐通报,2005,24(3):46-48. 被引量:10
  • 2任学昌,史载锋,孔令仁.TiO_2薄膜的Ag改性及光催化活性[J].催化学报,2006,27(9):815-822. 被引量:36
  • 3Asahi R, Morikawa T, Ohwaki T, Aoki K and Taga Y 2001 Science 293 269.
  • 4Peng L P, Xu L and Yin J W 2007 Acta Phys. Sin. 56 1585 (in Chinese).
  • 5Park J H, Kim S and Bard A J 2006 Nano Lett. 6 24.
  • 6Lettmann C, Hildenbrand K, Kisch H, Wacyk W and Maier W F 2001 Appl. Catal. B: Environ. 32 215.
  • 7Jin R, Wu Z, Liu Y, Jiang B and Wang H 2009 J. Hazard. Mater. 161 42.
  • 8Yang K, Dai Y and Huang B 2008 Chem. Phys. Lett. 456 71.
  • 9Zhao Z Y, Liu Q J, Zhu Z Q and Zhang J 2008 Acta Phys. Sin. 57 3760 (in Chinese).
  • 10Wang H and Lewis J P 2006 J. Phys.: Condens. Matter 18 421.

共引文献18

同被引文献7

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部