摘要
网络发展的时代,对于计算机网络的稳定性和可靠性研究是发展的必然趋势,在网络资源固定的情况下,在单位链路中增加网络资源的使用是整个网络系统优化的核心。在通过对遗传算法的改进,在满意度和适应度指标函数的判断下,改变网络的性能,经过数据迭代的次数来控制网络的约束条件,根据函数的验证进行优化设计。在本文中通过研究网络改进成本和迭代次数的关系,来验证遗传算法优化的成果,为计算机网络可靠性优化设计提供了实际的数据依据。
In era of network development,it is an inevitable trend to research stability and reliability of computer network.Under condition of fixed network resources,increasing application of network resources in unit link is the core of optimization of whole network system.Through modified genetic algorithm,under judgment of satisfaction and fitness index function,we can change performance of network,control constraints of network through iterations,and optimize design according to function verification.The paper studies relationship between cost of network improvement and iterations to verify results of genetic algorithm optimization,provides practical data basis for computer network reliability optimization design.
作者
宋杨
SONG Yang(Xuzhou Bioengineering Career Technical College,Xuzhou,Jiangsu 221006)
出处
《软件》
2020年第9期207-209,共3页
Software
关键词
改进遗传算法
计算机网络可靠性优化设计
拓扑结构
满意度
Modified genetic algorithm
Computer network reliability optimization design
Topology
Satisfaction