摘要
【目的】在四元数体上研究矩阵方程组[AX XD]=[B E]的通解复分量极秩问题。【方法】利用四元数矩阵的复表示将原方程组转化为等价的复方程组,再通过复矩阵奇异值分解获得等价方程的通解表达式。【结果】根据分块矩阵秩的关系得到原方程组通解的复分量极秩计算公式,并在方程组无解时得到最小二乘复矩阵解的极秩公式。【结论】结果拓展了四元数体上方程组解的极秩理论并获得复分量表示通解的极秩计算方法。
[Purposes]It researches the problem on extremal ranks of complex component in general solution of a quaternion system[AX XD]=[B E].[Methods]By using the complex representation of a quaternion matrix and singular value decomposition of a complex matrix,the equations are transformed into equivalent complex matrix equations,and its expressions of the general solution and least square solution are given.[Findings]Maximal and minimal ranks of the complex component in general solution are obtained from rank identity of block matrix.[Conclusions]The results extend the extreme rank theory and its calculation method of the solutions of equations over the quaternion field.
作者
王云
黄敬频
WANG Yun;HUANG Jingpin(College of Science,Guangxi University for Nationalities,Nanning 530006,China)
出处
《重庆师范大学学报(自然科学版)》
CAS
北大核心
2020年第4期100-105,共6页
Journal of Chongqing Normal University:Natural Science
基金
国家自然科学基金(No.11661011)
广西民族大学研究生创新项目(No.gxun-chxzs2019025)。
关键词
四元数方程组
复分量
极秩
奇异值分解
最小二乘
quaternion equations
complex component
extremal ranks
singular value decomposition
least squares