期刊文献+

W-hyperbolic空间中的β性质

β Property in W-hyperbolic Spaces
下载PDF
导出
摘要 在W-hyperbolic空间中给出了β性质的定义,进而应用βW-hyperbolic空间中β模的定义证明了它的逼近紧性,从而具有正规结构;其次证明了βW-hyperbolic空间中的非空交性质;最后讨论了βW-hyperbolic空间上的渐进平均非扩张映射的不动点存在性问题。 In this paper,the definition ofβproperty is given inβW-hyperbolic space,and then the definition ofβmodule inβspace is applied to prove its approximate compactness,so it has normal structure;Secondly,the nonnullative properties ofβspace are proved.Finally,the fixed point existence problem of asymptotic average nonexpansion mapping inβspace is discussed.
作者 樊丽颖 宋婧婧 王萍 FAN Li-ying;SONG Jing-jing;WANG Ping(College of Basic Science, Tianjin Agricultural University, Tianjin 300384, China;School of Applied Sciences, Harbin University of Science and Technology, Harbin 150080, China)
出处 《哈尔滨理工大学学报》 CAS 北大核心 2020年第4期162-166,共5页 Journal of Harbin University of Science and Technology
基金 黑龙江省自然科学基金(A2018006).
关键词 βW-hyperbolic空间 逼近紧 非空交性质 不动点 βW-hyperbolic spaces Close to tight Nonnullable property Fixed points
  • 相关文献

参考文献4

二级参考文献38

  • 1李阳.基于LMI的不确定离散多时滞系统保成本控制[J].辽宁石油化工大学学报,2012,32(4):83-87. 被引量:5
  • 2王建英.一类不确定离散时滞系统的二次保成本控制[J].集宁师专学报,2010,32(4):72-79. 被引量:2
  • 3黄剑,关治洪,王仲东.不确定离散脉冲系统的保成本控制研究[J].华中科技大学学报(自然科学版),2006,34(2):84-86. 被引量:3
  • 4GEOBEL K, KIRK W A. A Fixed Point Theorem for Asymptoti- cally Nonexpansive Mappings [ J]. Proc. Amer. Math. Soc., 1972(35) :171 - 174.
  • 5KOHLENBACH U. Some Logical Metaheorems with Applications in Functional Analysis[J]. Trans. Amer. Math. Soc., 2005,357 ( 1 ) :89 - 128.
  • 6BRIDSON M, HAEIGER A. Metric Spaces of Non-positive Curva- ture, Grundlehren der Mathematisehen Wissenschaften [ C ]// Springer-Verlag, Berlin, 1999:643.
  • 7KIRK W A. Krasnosel' Skii Iteration Process in Hyperbolic Spaces [J]. Numer, Funct. Anal. and Optimiz, 1982(4):371-381.
  • 8GOEBEL K, KIRK W A. Iteration Processes for Nonexpansive Mappings, In: S. P. Singh, S. Thomeier, B. Watson (eds.) Topological Methods in Nonlinear Functional Analysis (Toronto, 1982)[J]. Contemp. Math., Amer. Math. Soc., Providence, RI, 1983,21:115 - 123.
  • 9REICH S, SHAFRIR I. Nonexpansive Iterations in Hyperbolic Spaces[J]. Nonlinear Anal., 1990, 15(6): 537-558.
  • 10TAKAHASHI W. A Convexity in Metric Space and Nonexpansive Mappings[J]. Kodai Math. Sere. Rep. , 1970,22:142 - 149.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部