期刊文献+

多项时间分数阶扩散方程Hermite型各向异性元的高精度分析

High Accuracy Analysis of Anisotropic Hermite Type Element for Multiterm Time Fractional Diffusion Equations
下载PDF
导出
摘要 在各向异性网格下,针对具有Caput导数的二维多项时间分数阶扩散方程,给出Hermite型高精度全离散有限元分析方法.首先,基于空间Hermite型有限元和时间方向改进的L1逼近,建立一个全离散格式,并证明其无条件稳定性;其次,基于插值算子与Riesz投影算子之间的关系导出了超逼近性质,进而,借助于插值后处理技术得到了超收敛估计. A Hermite-type high-accuracy fully discrete finite element analysis method is proposed for two-dimensional multi-term time fractional diffusion equations with Caputo derivative on anisotropic meshes.Firstly,based on Hermite element in spatial direction and modified L1 approximate in temporal direction,a fully-discrete scheme is established and the unconditional stability analysis is investigated.Secondly,by use of the relationship between the interpolation operator and Riesz projection,superclose property is derived.Moreover,the superconvergence estimate is obtained through the interpolated postprocessing technique.
作者 樊明智 王芬玲 FAN Mingzhi;WANG Fenling(School of Science,Xuchang University,Xuchang 461000,China)
出处 《许昌学院学报》 CAS 2020年第5期1-5,共5页 Journal of Xuchang University
基金 国家自然科学基金(11971416)。
关键词 多项时间分数阶扩散方程 Hermite型各向异性元 无条件稳定 超逼近和超收敛 multi-term time fractional diffusion equations Hermite type anisotropic element unconditional stability supercloseness and superconvergence
  • 相关文献

参考文献2

二级参考文献22

  • 1石东洋,陈绍春.一类改进的Wilson任意四边形单元[J].高等学校计算数学学报,1994,16(2):161-167. 被引量:56
  • 2胡俊,满红英,石钟慈.带约束非协调旋转Q_1元在Stokes和平面弹性问题的应用[J].计算数学,2005,27(3):311-324. 被引量:34
  • 3朱起定 林群.有限元超收敛理论[M].长沙:湖南科学技术出版社,1989..
  • 4P.G. Ciarlet, The Finite Element Method for Elliptic Problem, North-Holland, Amsterdam,1978.
  • 5S.C. Brenner, L.R. Scott, The Mathematical Theory of Finite Element Methods, Springer-Verlag New York, Inc, 1998.
  • 6T. Apel, M. Dobrowolski, Anisotropic Interpolation with Application to the Finite Element Method, Computing, 47:3(1992), 277-293.
  • 7A. Zenisek, M. Vanmaele, The interpolation theory for narrow quadrilateral isoparametric finite elements, Numer. Math., 72:1(1995), 123-141.
  • 8T. Apel, G. Lue, Anisotropic mesh refinement in stabilized Galerkin methods, Numer.Math., 74:3(1996), 261-282.
  • 9T. Apel, Anisotropic Finite Elements: Local Estimates and Applications, B.G. Teubner Stuttgart, Leipzig, 1999.
  • 10S.C. Chen, D.Y. Shi and Y.C. Zhao, Anisotropic interpolation and quasi-Wilson element for narrow quadrilateral meshes, IMA. J. Numer. Anal., 24(2004), 77-95.

共引文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部