期刊文献+

基于频谱感知的蒙特卡洛定位算法 被引量:2

Monte Carlo positioning algorithm based on spectrum sensing
下载PDF
导出
摘要 为在未知信号源参数的情况下,仅根据接收到的观测信号对信号进行定位,结合频谱感知得到的接收信号强度(RSSI),提出一种分布式蒙特卡洛定位算法,从无线电信号传播损耗特性的物理层面出发,结合RSSI定位和蒙特卡洛方法,将传统的测距定位转换为概率学问题,利用不同检测节点的RSSI值的比较和四分法对信号源位置进行预测,缩小采样空间,增加更多的粒子滤波要求,达到提高定位精度的目的。仿真结果表明,相比于传统定位算法,该算法定位精度高,容错性好,能够减少由RSSI测量精度不高、检测节点频繁离开或加入引起的定位误差。 To locate the signal based on the received observation signal in the case of unknown signal source parameters,combined with the received signal strength(RSSI)obtained by spectrum sensing,a distributed Monte Carlo localization algorithm was proposed.From the perspectives of physical characteristics of propagation loss of radio signals,combined with RSSI positioning and Monte Carlo method,the traditional ranging location was converted into a probabilistic problem.The RSSI value of different detection nodes was compared and the quadrature method was used to predict the position of the signal source,reducing the sampling space and increasing particle filtering requirements were required to improve positioning accuracy.The simulation results show that compared with the traditional positioning algorithm,the proposed algorithm has high positioning accuracy and good fault tolerance,which can reduce the positioning error caused by the low accuracy of RSSI detection and frequent departure or addition of detection nodes.
作者 马明明 张永辉 陈真佳 MA Ming-ming;ZHANG Yong-hui;CHEN Zhen-jia(School of Information and Communication Engineering,Hainan University,Haikou 570228,China)
出处 《计算机工程与设计》 北大核心 2020年第10期2701-2706,共6页 Computer Engineering and Design
基金 国家自然科学基金项目(61961012、61561018)。
关键词 频谱感知 协同检测 接收信号强度 蒙特卡洛定位 信号源盲检测 spectrum sensing cooperative detection RSSI Monte Carlo positioning blind signal detection
  • 相关文献

参考文献7

二级参考文献71

  • 1苏进,万江文,于宁.无线传感器网络相对定位算法研究[J].传感技术学报,2007,20(12):2695-2700. 被引量:7
  • 2于丽霞,王福明.微弱信号检测技术综述[J].信息技术,2007,31(2):115-116. 被引量:20
  • 3Smith A,Balakrishnan H,Goraczko M. Tracking Moving Devices with the Cricket Location System[A].Boston,USA:ACM Press,2004.190-202.
  • 4He Tian,Huang Chengdu,Blum B M. Range-free Localization Schemes for Large Scale Sensor Networks[A].San Diego,USA:ACM Press,2003.81-95.
  • 5Shang Yi,Ruml W,Zhang Ying. Localization from Mere Connectivity[A].Annapolis,USA:ACM Press,2003.201-212.
  • 6Hu Lingxuan. Localization for Mobile Sensor Networks[A].Philadelphia,USA:ACM Press,2004.45-57.
  • 7Yu Qin,Wang Weidong,Qin Zhigang. RSS-based Monte Carlo Nodes Localization in Wireless Ad-Hoc Networks[A].Milpitas,USA,2009.217-221.
  • 8Yi J,Yang S,Cha H. Multi-hop-based Monte Carlo Localization for Mobile Sensor Networks[A].San Diego,USA:IEEE Press,2007.163-171.
  • 9Paramvir B. RADAR:An In-building RF-based User Location and Tracking System[A].Tel Aviv,Israel:IEEE Communications Society,2000.775-784.
  • 10Baggio A. Monte-Carlo Localization for Mobile Wireless Sensor Networks[A].Hong Kong,China,2006.718-733.

共引文献26

同被引文献16

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部