摘要
为有效解决机器视觉算法识别硅片图像缺陷时存在检测速度慢、准确率低和稳定性差等问题,提出一种锚点集的优化方法。将Faster R-CNN检测网络与ResNet相结合进行特征提取;针对硅片缺陷数据集的特点,从理论上通过期望的定位精度推导一种优化的锚点集;利用优化后的锚点集训练缺陷检测模型。实验结果表明,所提检测模型识别精度提升至94.1%,检测时间达到160 ms,满足工业检测的需求。
To solve the problems of low detection speed,low accuracy and poor stability in the recognition of silicon wafer image defects using machine vision algorithm effectively,an anchor-set optimization method was proposed.Feature extraction was carried out by combining Faster R-CNN detection network with ResNet.Focusing on the characteristics of silicon wafer defect data sets,an optimized anchor-set was deduced theoretically according to the expected location accuracy.The optimized anchor-set was used to train the defect detection model.Experimental results show that the accuracy of the proposed detection model is improved to 94.1%,while the detection time is 160 ms,which meets the requirements of industrial detection.
作者
王晓茹
张雪英
黄丽霞
赵利军
肖方生
王安红
WANG Xiao-ru;ZHANG Xue-ying;HUANG Li-xia;ZHAO Li-jun;XIAO Fang-sheng;WANG An-hong(College of Information and Computer,Taiyuan University of Technology,Taiyuan 030024,China;School of Electronic Information Engineering,Taiyuan University of Science and Technology,Taiyuan 030024,China;The Second Research Institute,China Electronics Technology Group Corporation,Taiyuan 030024,China)
出处
《计算机工程与设计》
北大核心
2020年第10期2770-2776,共7页
Computer Engineering and Design
基金
国家自然科学基金项目(61672373)
山西省科技成果转化引导专项基金项目(201804D131035)。