期刊文献+

基于锚点集优化的硅片图像缺陷检测方法 被引量:2

Defect detection method of silicon wafer image based on anchor-set optimization
下载PDF
导出
摘要 为有效解决机器视觉算法识别硅片图像缺陷时存在检测速度慢、准确率低和稳定性差等问题,提出一种锚点集的优化方法。将Faster R-CNN检测网络与ResNet相结合进行特征提取;针对硅片缺陷数据集的特点,从理论上通过期望的定位精度推导一种优化的锚点集;利用优化后的锚点集训练缺陷检测模型。实验结果表明,所提检测模型识别精度提升至94.1%,检测时间达到160 ms,满足工业检测的需求。 To solve the problems of low detection speed,low accuracy and poor stability in the recognition of silicon wafer image defects using machine vision algorithm effectively,an anchor-set optimization method was proposed.Feature extraction was carried out by combining Faster R-CNN detection network with ResNet.Focusing on the characteristics of silicon wafer defect data sets,an optimized anchor-set was deduced theoretically according to the expected location accuracy.The optimized anchor-set was used to train the defect detection model.Experimental results show that the accuracy of the proposed detection model is improved to 94.1%,while the detection time is 160 ms,which meets the requirements of industrial detection.
作者 王晓茹 张雪英 黄丽霞 赵利军 肖方生 王安红 WANG Xiao-ru;ZHANG Xue-ying;HUANG Li-xia;ZHAO Li-jun;XIAO Fang-sheng;WANG An-hong(College of Information and Computer,Taiyuan University of Technology,Taiyuan 030024,China;School of Electronic Information Engineering,Taiyuan University of Science and Technology,Taiyuan 030024,China;The Second Research Institute,China Electronics Technology Group Corporation,Taiyuan 030024,China)
出处 《计算机工程与设计》 北大核心 2020年第10期2770-2776,共7页 Computer Engineering and Design
基金 国家自然科学基金项目(61672373) 山西省科技成果转化引导专项基金项目(201804D131035)。
关键词 锚点集优化 卷积神经网络 缺陷检测 Faster R-CNN optimization of anchor-sets convolutional neural network defect detection Faster R-CNN
  • 相关文献

参考文献4

二级参考文献44

  • 1Bengio Y. learning Deep Architectures for Al. Foundations andTrends in Machine Learning, 2009 , 2(1): 1-127.
  • 2Hinton G E,SaIakhut(Jinov R R. Reducing the Dimensionality ofData with Neural Networks. Science, 2006, 313(5786) : 504-507.
  • 3Bengio Y, Delalleau 0. On the Expressive Power of Deep Archilec-tures // Proc of the 22nd International Conference on Algorithmiclearning Theory. Ksp[M], Finland,2011: 18-36.
  • 4Yoshua B, l^eCun Y. Scaling Learning Algorithms towards Al.Cambridge,USA : MIT Press, 2007.
  • 5Dahl G E, Yu d, Deng L, el al. Context-Dependent Pre-trainedDeep Neural Networks for Large-Vocabulary Speech Recognition.IEEE Trans on Audio, Speech and Language Processing, 2012,20(1):30-42.
  • 6Hinton G,Deng L, Yu D, et al. Deep Neural Networks for AcousticModeling in Speech Recognition : The Shared Views of FourResearch Groups. IEEE Signal Processing Magazine, 2012, 29(6) : 82-97.
  • 7Sungjoon C, Kim E, Oh S. Human Behavior Prediction for SmartHomes Using Deep Learning // Proc of the 22nd IEEE InternationalSymposium on Robot and Human Interactive Communication. Gyeo-ngju, Republic of Korea, 2013 : 173-179.
  • 8林妙真.基于深度学习的人脸识别研究.硕士学位论文.大连:大连理工大学,2013.
  • 9Wang N Y, Yeung D. Learning a Deep Compact Image Represen-tation for Visual Tracking // Proc of the 27th Annual Conferenceon Neural Information Processing Systems. Lake Tahoe, USA,2013: 809-817.
  • 10Tsai D M,Wu S C,Li W C. Defect Detection of Solar Cells in E-lectroluminescence Images Using Fourier Image Reconstruction.Solar Energy Materials and Solar Cells, 2012 , 99 : 250-262.

共引文献151

同被引文献12

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部