摘要
利用初等的方法,证明不定方程x^2+py^2=z^2存在无数多组解,给出了解的结构,并给出了一些特殊解.这为求不定方程x^2+py^2=z^2的正整数解提供了一个切实有效的公式化方法.根据不定方程x^2+py^2=z^2解的结构,给出了对应的二次曲线x^2+py^2=1上有理点的个数及结构.
By using elementary method,it is proved that the Diophantine equation x^2+py^2=z^2 has innumerable groups of solutions.The structure of the solutions and some special solutions was given.This provides a practical and effective formulaic method for finding positive integer solutions of Diophantine equation x^2+py^2=z^2.According to the structure of the solution of Diophantine equation x^2+py^2=z^2,the number and structure of rational points on the corresponding conic x^2+py^2=1was given.
作者
周泽文
ZHOU Zewen(School of Mathematics and Statistics,Yulin Normal University,Yulin 537000,China)
出处
《高师理科学刊》
2020年第9期4-7,10,共5页
Journal of Science of Teachers'College and University
关键词
不定方程
正整数解
存在性
二次曲线
有理点
Diophantine equation
positive integer solution
existence
conic
rational point