期刊文献+

希尔伯特空间中里斯对偶的谱刻画

Spectral Characterization of R-duals in Hilbert Space
原文传递
导出
摘要 里斯对偶的概念首先由Casazza等人提出,此后成为了框架理论的一个研究热点.本文主要利用算子的谱给出两个序列能成为里斯对偶的充要条件.由于应用的广泛性,我们主要关注有限维希尔伯特空间中的框架. The concept of R-dual has triggered a lot of research activities since it is first introduced by Casazza et al.In this paper,we mainly use operator spectrum to give conditions under which two sequences form an R-dual.Particularly,we focus on frames in the finite dimensional Hilbert space because of its wide range of applications.
作者 庄智涛 ZHUANG Zhitao(College of Mathematics and Statistics,North China University of Water Resources and Electric Power,Zhengzhou,Henan,450046,P.R.China)
出处 《数学进展》 CSCD 北大核心 2020年第5期617-625,共9页 Advances in Mathematics(China)
基金 Supported by NSFC (No.11601152)。
关键词 里斯对偶 框架 R-dual frame spectrum
  • 相关文献

参考文献2

二级参考文献19

  • 1Young R M. An Introduction to Nonharmonic Fourier Series. New York: Academic Press, 1980.
  • 2Casazza P G. The art of frame theory. Taiwan Residents J of Math, 2000, 4 (2): 129-201.
  • 3Christensen O. An Introduction to Frames and Riesz Bases. Boston: Birkhauser, 2003.
  • 4Christensen O. Frames, Riesz bases, and discrete Gabor/wavelet expansions. Bulletin Amer Math Soc, 2001, 38(3): 273-291.
  • 5Mallat S著,杨力华,戴道清,黄文良,等译.信号处理的小波导引(第二版)(A Wavelet Tour of Signal Processing(Second Edition)).北京:机械工业出版社,2002.
  • 6Ron A, Shen Z. Weyl-Heisenberg frames and Riesz bases in L^2(R^d). Duke Math J, 1997, 89:237-282.
  • 7Wexler J, Raz S. Discrete Gabor expansions. Signal Proc, 1990, 21:207-221.
  • 8Casazza P G, Kutyniok G, Lammers M C. Duality principles in frame theory. J Fourier Anal Appl, 2004,10(4): 383- 408.
  • 9Christensen O, Stoeva D T. p-frames in separable Banach spaces. Advances in Computational Mathematics, 2003, 18:117-126.
  • 10Zhu Y C. q-Besselian frames in Banach spaces. Acta Mathematica Sinica, English Series, 2007, 23(9): 1707-1718.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部