期刊文献+

高灵敏光子晶体光纤温度传感器的特性分析

Characteristic Analysis of Highly Sensitive Photonic Crystal Fiber Temperature Sensor
下载PDF
导出
摘要 针对填充液体的光子晶体光纤温度传感器灵敏度较低的问题,文章提出了一种基于模式耦合的高灵敏光子晶体光纤温度传感器,光子晶体光纤的纤芯作为传光通道,填充液态乙醇和氯仿的液芯作为耦合通道,当纤芯与液芯发生模式耦合时,纤芯的限制损耗谱会出现一个狭窄的损耗尖峰。损耗峰的位置随温度的变化而漂移。光子晶体光纤的纤芯和液芯相互独立,可以分别调整其传输特性。利用有限差分算法对传感器的特性进行了仿真研究,结果表明,设计的光纤结构具有良好的温度传感特性,耦合波长随温度升高而红移,在10~35℃范围内,温度检测灵敏度最高可达44.16 nm/℃,光纤结构参数的变化对灵敏度影响较小。 Aiming at the problem of low sensitivity of liquid-filled photonic crystal fiber temperature sensor,a high-sensitivity photonic crystal fiber temperature sensor based on mode-coupling principle is proposed.We use the core of photonic crystal fiber as the light transmission channel and the liquid core filled with ethanol and chloroform as the coupling channel.When the mode coupling occurs between the fiber core and liquid core,a narrow high loss peak is formed in the confinement loss spectrum.The position of the loss peak shifts with the change of temperature.Because the core and the liquid core of the photonic crystal fiber are independent of each other,their transmission characteristics can be adjusted respectively.The properties of this sensor are analyzed by the finite difference method.Results show that the designed optical fiber structure has good temperature sensing characteristics,and the coupling wavelength is red-shift with the increase of temperature.The maximum sensitivity of temperature detection is up to 44.16 nm/℃between 10℃and 35℃,and the influence of fiber structure parameters on the sensitivity is not obvious.
作者 曾维友 王晴岚 徐利 ZENG Wei-you;WANG Qing-lan;XU Li(School of Science,Hubei University of Automotive Technology,Shiyan 442002,China)
出处 《光通信研究》 北大核心 2020年第5期37-41,共5页 Study on Optical Communications
基金 国家自然科学基金资助项目(11305057) 湖北省教育厅基金资助项目(B2018066)。
关键词 光纤传感器 光子晶体光纤 温度传感器 模式耦合 限制损耗 fiber optics sensor photonic crystal fiber temperature sensor mode coupling confinement loss
  • 相关文献

参考文献5

二级参考文献32

  • 1陈卫国,娄淑琴,王立文,李宏雷,郭铁英,简水生.光子晶体光纤长周期光栅的特性[J].中国激光,2009,36(3):699-704. 被引量:6
  • 2T. R. Wolinski, K. Szaniawska, S. Ertman et al.. Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres[J]. Meas. Sci. Technol., 2006, 17(5): 985-991
  • 3N. Palka. Sensing properties of photonic crystal fibers[J]. J. Phys. IV France, 2005, 129: 143-145
  • 4M. Szustakowski, N. Palka. Comparative study of phase sensitivity of conventional and index-guiding photonic crystal fibres[C]. Proc. Transparent Optical Networks International Conference, 2005, 2(3-7): 319-321
  • 5T. Nasilowski, P. Lesiak et al.. Birefringent photonic crystal fiber as multi-parameter sensor[C]. Proc. Annual Symposium of the IEEE/LEOS Benelux Chapter, 2003. 29-32
  • 6J. B. Jensen, J. Riishede, J. Broengex et al.. Photonic crystal fibers; fundamental properties and applications within sensors[C]. Proc. IEEE, 2003, 1(22-24): 269-278
  • 7B. J. Eggleton, C. Kerbage, P. S. Westbrook et al.. Microstructure optical fiber devices[J]. Opt. Express, 2001, 9(13): 698-713
  • 8F. Du, Y. Lu, S. Wu. Electrically tunable liquid-crystal photonic crystal fiber[J]. Appl. Phys. Lett., 2004, 85(12): 2181-2183
  • 9M. Haakestad. Electrically tunable photonic bandgap guidance in a liquid-filled photonic crystal fiber[J]. IEEE Photon. Technol. Lett., 2005, 17(4): 819-821
  • 10P. Steinvurzel, B. Eggleton, C. D. Sterke et al.. Continuously tunable bandpass filtering using high-index inclusion microstructured optical fiber[J]. Electron. Lett., 2005, 41(8): 463-464

共引文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部