期刊文献+

On product affine hyperspheres in R^n+1 被引量:2

原文传递
导出
摘要 In this paper,we study locally strongly convex affine hyperspheres in the unimodular affine space Rn+1 which,as Riemannian manifolds,are locally isometric to the Riemannian product of two Riemannian manifolds both possessing constant sectional curvature.As the main result,a complete classification of such affine hyperspheres is established.Moreover,as direct consequences,3-and 4-dimensional affine hyperspheres with parallel Ricci tensor are also classified.
出处 《Science China Mathematics》 SCIE CSCD 2020年第10期2055-2078,共24页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China(Grant No.11771404)。
  • 相关文献

参考文献2

二级参考文献13

  • 1O'Neill, B.: Isotropic and K~hler immersions. Canad. J. Math., 17, 905-915 (1965).
  • 2Sakamoto, K.: Planar geodesic immersions. T6hoku Math. J., 29, 25-56 (1977).
  • 3Naitoh, H.: Isotropic submanifolds with parallel second fundamental form in Pro(c). Osaka J. Math., 18, 427-464 (1981).
  • 4Montiel, S., Urbano, F.: Isotropic totally real submanifolds. Math. Z., 199, 55-60 (1988).
  • 5Vrancken, L.: Some remarks on isotropic submanifolds. Publ. Inst. Math. (Beograd) (N.S.), 51(65), 94 100 (1992).
  • 6Hu, Z., Li, H., Vrancken, L.: Locally strongly convex affine hypersurfaces with parallel cubic form. J. Differential Geometry, 87, 239 307 (2011).
  • 7Nomizu, K., Sasaki, T.: Affine Differential Geometry, Cambridge University Press, Cambridge, 1994.
  • 8Ejiri, N.: Totally real submanifolds in a complex projective space. Preprint.
  • 9Sasaki, T.: Hyperbolic affine hyperspheres. Nagoya Math. J., 77, 107 123 (1980).
  • 10Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry II, Interscience, New York, 1969.

共引文献3

同被引文献8

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部