期刊文献+

加速器氚靶膜厚误差对BIXS方法反演的影响

Effect of Thickness Error of Accelerator Tritium Film on Inversion of BIXS Method
下载PDF
导出
摘要 BIXS(β-ray induced X-ray spectrometry)方法是一种氚β衰变诱发X射线谱的氚无损分析技术,在反演过程中会受到诸多因素的影响,氚靶膜厚误差的影响不可忽略。本文基于蒙特卡罗方法程序PENELOPE模拟和实验验证研究,表明加速器氚靶膜厚误差会对BIXS方法反演有一定的影响,其中对递增分布的影响最大,对递减分布的影响最小;氚在靶膜中的深度分布的斜率越大,膜厚误差对BIXS方法反演的影响也越大。 BIXS(β-ray induced X-ray spectrometry)is a nondestructive method to analyze tritium,which can be affected by many factors in inversion process.The difference between tritium film’s thickness and inversion basic function spectrum’s thickness can’t be overlooked.By the Monte Carlo method code PENELOPE and experiment,it is found that the thickness error of accelerator tritium film has an effect for inversion of BIXS method.The thickness error makes a great impact on tritium increasing distribution,and a less impact on tritium descending distribution.The bigger the slope of tritium depth distribution in titanium film,the greater the influence of thickness error of tritium film on BIXS inversion.
作者 张哲 张伟光 安竹 孙洪伟 胡双林 ZHANG Zhe;ZHANG Weiguang;AN Zhu;SUN Hongwei;HU Shuanglin(Institute of Nuclear Physics and Chemistry,China Academy of Engineering Physics,Mianyang 621900,China;Key Laboratory of Radiation Physics and Technology,Ministry of Education,Institute of Nuclear Science and Technology,Sichuan University,Chengdu 610064,China)
出处 《原子能科学技术》 EI CAS CSCD 北大核心 2020年第10期1956-1960,共5页 Atomic Energy Science and Technology
关键词 加速器 BIXS 蒙特卡罗模拟 氚靶 反演 accelerator BIXS Monte Carlo simulation tritium film inversion
  • 相关文献

参考文献3

二级参考文献39

  • 1范宜仁,魏丹,邓少贵.Tikhonov正则化方法在测井反演中的应用[J].测井技术,2005,29(2):102-104. 被引量:2
  • 2Matsuyama M. Tritium assay in materials by the bremsstrahlung counting method[J].Fusion Engineering and Design, 1998(39/413) :929- 936.
  • 3Morozov V A. Methods for solving incorrectly posed problems[M]. New York: Springer, 1984.
  • 4Engl H W. On the choice of regularization parameter for iterated Tikhonov regularization of ill posed problems[J]. J of Approx Theory, 1987,49: 55-63.
  • 5肖庭延,于慎根,王彦飞.反问题的数值解法[M].北京:科学出版社,2008.
  • 6R.-D. Penzhorn,Y. Torikai,K. Watanabe,M. Matsuyama,A. Perevezentsev.On the fate of tritium in thermally treated stainless steel type 316L[J].Journal of Nuclear Materials (-).2012(1-3)
  • 7A.N. Perevezentsev,A.C. Bell,L.A. Rivkis,V.M. Filin,V.V. Gushin,M.I. Belyakov,V.I. Bulkin,I.M. Kravchenko,I.A. Ionessian,Y. Torikai,M. Matsuyama,K. Watanabe,A.I. Markin.Comparative study of the tritium distribution in metals[J].Journal of Nuclear Materials.2007(2)
  • 8M. Matsuyama,N. Bekris,M. Glugla,N. Noda,V. Philipps,K. Watanabe.Non-destructive tritium measurements of Mk IIA divertor tile by BIXS[J].Journal of Nuclear Materials.2003
  • 9M. Matsuyama,T. Murai,K. Yoshida,K. Watanabe,H. Iwakiri,N. Yoshida.Studies on retention of tritium implanted into tungsten by β-ray-induced X-ray spectrometry[J].Journal of Nuclear Materials.2002
  • 10WILLMS R, KOBAYASHI K, IWAI Y, et al. Fusion engi-neering and design, 2002, 61: 575.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部