期刊文献+

相干耦合光纤系统中孤子与呼吸子间的相互作用

Interactions Between Soliton and Breathers in Coherently Coupled Fiber System
原文传递
导出
摘要 本文基于变系数相干耦合非线性薛定谔方程组的复合波解,研究了均匀和非均匀相干耦合光纤系统中平面波背景上的孤子与Akhmediev呼吸子和Kuznetsov-Ma呼吸子间的相互作用.研究发现,孤子与Akhmediev呼吸子间存在弹性碰撞 、准弹性碰撞和非弹性碰撞三种形式,而孤子与Kuznetsov-Ma呼吸子间呈现弹性碰撞或平行传输.进一步,通过研究一种周期扰动的非均匀相干耦合光纤系统,发现色散和非线性的周期扰动不会影响孤子与呼吸子相互作用的本质,但均会引起复合波振幅的波动;另外,仅色散扰动会导致孤子的轨迹产生波动,而非线性的扰动不会影响孤子的轨迹. Based on the composite wave solutions of the variable coefficient coherently coupled nonlinear Schrodinger equations,the interactions between soliton on a plane wave background and Akhmediev breather or Kuznetsov-Ma breather in coherently coupled homogeneous and inhomogeneous fiber systems are studied in this paper.It is found that there exist three types of collisions including elastic collision,quasi-elastic collision and inelastic collision between the soliton and Akhmediev breather,while the interaction between the soliton and Kuznetsov-Ma breather is characterized by parallel transmission or elastic collision.Furthermore,it is revealed that in a coherently coupled inhomogeneous fiber system with periodic perturbation,the periodically perturbed dispersion and nonlinearity do not affect the characteristics of the interactions between soliton and breathers except for the amplitude fluctuation of the composite waves.In addition,only the dispersion perturbation leads to the fluctuation of the soliton trajectory,while the nonlinearity perturbation can not affect the trajectory of the soliton.
作者 杨琳 贾鹤萍 YANG Lin;JIA He-ping(School of Physics and Electronic Engineering,Shanxi University,Taiyuan 030006,China)
出处 《量子光学学报》 北大核心 2020年第3期302-312,共11页 Journal of Quantum Optics
基金 国家自然科学基金(61775126) 山西省自然科学基金(201801D221164)。
关键词 相干耦合系统 复合波 呼吸子 孤子 相互作用 Coherently coupled system Composite wave Breathers Soliton Interaction
  • 相关文献

参考文献1

二级参考文献20

  • 1李宏,杨祥林,刘堂坤.暗孤子传输系统中调制拉曼泵浦的控制作用[J].中国激光,1997,24(7):654-658. 被引量:2
  • 2V. N. Serkin,A. Hasegawa.Soliton management in the nonlinear Schr?dinger equation model with varying dispersion, nonlinearity, and gain[J],2000.
  • 3Hasegawa A,Tappert F.Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersionApplied Physics,1973.
  • 4Hasegawa A,Tappert F D.Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers-Ⅱ: Normal dispersionApplied Physics,1973.
  • 5Mollenauer L F,Stolen R H,Gordon J P.Experimental observation of picosecond pulse narrowing and solitons in optical fibersPhysical Review,1980.
  • 6HAO R Y,LI L,LI Z H,et al.A New Approach to Exact Soliton Solutions and Soliton Interaction for the NonlinearSchrdinger Equation with Variable CoeffcientsOptics Communication,2004.
  • 7YANG R C,HAO R Y,LI L,et al.Exact Gray Multi-soliton Solutions for Nonlinear Schr dinger Equation withVariable CoefficientsOptics Communication,2005.
  • 8Kruglov V. I,Peacock A. C,Harvey J. D.Exact Self-Similar Solutions of the Generalized Nonlinear Schrodinger Equation with Distributed CoefficientsPhysical Review,2003.
  • 9H.G. Luo,D. Zhao,X.G. He.Exactly controllable transmission of nonautonomous optical solitonsPhysical Review A Atomic Molecular and Optical Physics,2009.
  • 10K. Porsezian,R. Ganapathy,A. Hasegawa,V.N. Serkin.Nonautonomous soliton dispersion managementIEEE Journal of Quantum Electronics,2009.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部