期刊文献+

联合成对学习和图像聚类的无监督肺癌亚型识别 被引量:3

Lung Cancer Subtype Recognition with Unsupervised Learning Combining Paired Learning and Image Clustering
下载PDF
导出
摘要 基因诊断是近年来提高肺癌治愈率的一种新型且有效的方法,但这种方法存在基因检测时间长、费用高、侵入式取样损伤大的问题。文中提出了基于成对学习和图像聚类的无监督学习的肺癌亚型识别方法。首先,采用无监督卷积特征融合网络用于学习肺癌CT图像的深度表示,有效地捕捉被忽略的重要特征信息,并使用包含不同层次抽象信息的最终融合特征来表征肺癌亚型。然后,使用联合成对学习和图像聚类的分类学习框架进行建模,充分利用学习到的特征表示,确保有效的聚类学习,以取得更高的分类精度。最后,利用生存分析和基因分析对肺癌亚型进行多角度验证。在合作医院和TCGA-LUAD数据集上的实验结果表明,该方法通过可靠无创的影像分析和放射成像技术,发现了3种具有不同分子特征的肺癌影像亚型,在降低基因检测问题的同时可有效辅助医师进行精准诊断和个性化治疗,进而提高肺癌患者的治愈生存率。 In recent years,gene diagnosis has been one of the new and effective methods to improve the cure rate of lung cancer,but it has the problems of time-consuming,high cost and serious damage from invasive sampling.In this paper,an unsupervised learning method of Lung cancer subtype recognition based on paired learning and image clustering is proposed.Firstly,the unsupervised convolution feature fusion network is used to learn the deep representation of lung cancer CT images and effectively capture the important feature information that is ignored,and the final fusion features containing different levels of abstract information is used to represent lung cancer subtypes.Then,the classification learning framework of combined paired learning and image clustering is used for modeling,and the learnt feature representation is fully utilized to ensure effective clustering learning,so as to achieve higher classification accuracy.Finally,survival analysis and gene analysis are used to verify lung cancer subtypes from multiple perspectives.Experiments on the data sets of the cooperative hospital and TCGA-LUAD show that,through reliable and non-invasive image analysis and radiological imaging technology,three subtypes of lung cancer with different molecular characte-ristics have been found by this method.It can effectively assist doctors in accurate diagnosis and personalized treatment while reducing problems in gene detection,so as to improve the survival rate of lung cancer patients.
作者 任雪婷 赵涓涓 强彦 Saad Abdul RAUF 刘继华 REN Xue-ting;ZHAO Juan-juan;QIANG Yan;Saad Abdul RAUF;LIU Ji-hua(School of Information and Computer Science,Taiyuan University of Technology,Taiyuan 030024,China;School of Computer Science and Technology,Lvliang University,Lvliang,Shanxi 033000,China)
出处 《计算机科学》 CSCD 北大核心 2020年第10期200-206,共7页 Computer Science
基金 国家自然科学基金项目(61872261) 北京航空航天大学虚拟现实技术与系统国家重点实验室项目(VRLAB2018A08) 山西省重点研发计划国际科技合作项目(201803D421036)。
关键词 肺癌亚型识别 成对学习 图像聚类 无监督学习 深度表示 Lung cancer subtype recognition Paired learning Image clustering Unsupervised learning Deep representation
  • 相关文献

参考文献1

二级参考文献46

  • 1Kris MG, Johnson BE, Kwiatkowski DJ, et al. Identification of driver muta- tions in tumor specimens from 1,000 patients with lung adenocarcinoma: The NCI's Lung Cancer Mutation Consortium (LCMC). J Clin Oncol, 2011, 29(suppl): abstract CRATS06.
  • 2Li C, Fang R, Sun Y, et al. Spectrum of oncogenic driver mutations in lung adenocarcinomas from East Asian never smokers. PLoS One, 2011, 6(11): e28204.
  • 3Mollberg N, Surati M, Demchuk C, et al. Mind-mapping for lung cancer: towards a personalized therapeutics approach. Adv Ther, 2011, 28(3): 173-194.
  • 4Dacic S. Molecular diagnostics of lung carcinomas. Arch Pathol Lab Med, 2011, 135(5): 622-629.
  • 5Kim ES, Hirsh V, Mok T, et al. Gefitinib versus docetaxel in previously treat- ed non-small-cell lung cancer (INTEREST): a randomised phase Ⅲ trial. Lancet, 2008, 372(9652): 1809-1818.
  • 6Mok TS, Wu YL, "Ihongprasert S, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N EnglJ Med, 2009, 361 (10): 947-957.
  • 7Zhou C, Wu YL, Chen G, et al. Updated efficacy and quality-of-life (QoL) analyses in OPTIMAL, a phase III, randomized, open-label study of first-line erlotinib versus gemcitabine/carboplatin in patients with EGFR-activating mutation-positive (EGFR Act Mut+) advanced non-small cell lung cancer (NSCLC).J Clin Oncol, 2011, 29(suppl ): abstract 7520.
  • 8Wu YL, I(im JH, Park K, et al. Efficacy and safety of maintenance erlotinib in Asian patients with advanced non-small-cell lung cancer: A subanalysis of the phase Ⅲ, randomized SATURN study. Lung Cancer, 2012, 77(2): 339-345.
  • 9Rosell R, Gervais R, Vergnenegre A, et al. Erlotinib versus chemotherapy (CT) in advanced non-small cell lung cancer (NSCLC) patients (p) with epidermal growth factor receptor (EGFR) mutations: Interim results of the European Erlotinib Versus Chemotherapy (EURTAC) phase Ⅲ randomized trial.J Clin Oncol, 2011, 29(suppl): abstract 7503.
  • 10Ayoola A, Barochia A, Belani K, et al. Primary and acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer: an update. Cancer Invest, 2012, 30(5): 433-446.

共引文献18

同被引文献7

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部