期刊文献+

垂直传染与环境因素对野牛布鲁氏菌传播的影响研究 被引量:1

Study on the Effects of Vertical Infection and Environmental Factors on the Transmission of Bison Brucella
原文传递
导出
摘要 研究了布鲁氏菌通过水平和垂直传染在野牛种群中传播的非线性动态模型.在SIR模型中引入了环境中的布鲁氏菌对野牛的影响,并提出了一种SIRB模型.分别算出了该模型的无病平衡点P0和地方病平衡点P*,利用再生矩阵得到模型的阈值R0,证明了模型平衡点的稳定性由阈值的大小所决定,即R0<1时,通过构造合适的Lyapunov函数,证得无病平衡点全局渐近稳定.当R0>1时,利用几何方法,证得地方病平衡点全局渐近稳定. This paper studies the nonlinear dynamic model of Brucella infection in bison populations by horizontal and vertical transmission.Based on the SIR model,we considered the factors of brucellosis in the environment and proposed a new SIRB model.This paper calculates the disease-free equilibrium P0 and the endemic equilibrium P*of the model.Using the next generation matrix,we get the threshold R0 of the model.We proved that the stability of the equilibrium points is determined by the size of the reproduction number.When R0<1,by constructing a suitable Lyapunov function,we proved the globally asymptotic stability of the disease-free equilibrium.When R0>1,using the geometric method,we proved the globally asymptotic stability of the endemic equilibrium under certain condition.
作者 康瑶瑶 夏米西努尔·阿布都热合曼 KANG Yao-yao;Xamxinur Abdurahman(College of Mathematics and Systems Science,Xinjiang University,Urumqi 830046,China)
出处 《数学的实践与认识》 北大核心 2020年第18期139-146,共8页 Mathematics in Practice and Theory
基金 国家自然科学基金(11861063)。
关键词 垂直传染 布鲁氏病 李雅普诺夫函数 几何方法 vertical transmission brucellosis Lyapunov function the geometric method
  • 相关文献

参考文献1

二级参考文献33

  • 1Thieme H R, Castillo-Chavez C. On the role of variable infectivity in the dynamics of the human immunodeficiency virus epidemic. In: Castillo-Chavez C, Ed. Mathematical and Statistical Approaches to AIDS Epidemiology (Lect Notes Biomath Vol.83). Berlin, Heidelberg, New York: Springer, 1989. 157- 177
  • 2Anderson R M. Transmission dynamics and control of infectious diseases. In: Anderson R M, May M R, Ed. Population Biology of Infectious Diseases, Life Sciences Research Report 25, Dahlem Conference.Berlin: Springer, 1982. 149- 176
  • 3Dietz K, Overall population patterns in the transmission cycle of infectious disease agents. In: Anderson R M, May R M, Ed. Population Biology of Infectious Diseases. Belin, Heidelberg, New York: Springer,1982
  • 4Heesterbeek J A P, Metz J A J. The saturating contact rate in marriage and epidemic models. J Math Biol, 1993, 31:529-539
  • 5Brauer F, van den Driessche P. Models for transmission of disease with immigration of infectives. Math Biosci, 2001, 171:143-154
  • 6Brauer F. Models for universally fatal diseases II. In: Busenberg S, Martelli M, Ed. Differential Equations Models in Biology, Epidemiology and Ecology. Lecture Notes in Biomathematics 92. Belin, Heidelberg,New York: Springer, 1991. 57-69
  • 7Brauer F. Models for the spread of universally fatal biseases. J Math Biol, 1990, 28:451- 462
  • 8Brauer F. Epidemic models in populations of varying size. In: CastillO-Chavez C, Levin S A, Shoemaker C, Ed. Mathematical Approaches to Problems in Resource Management and Epidemiology. Lecture Notes in Biomathematics 81. Belin, Heidelberg, New York: Springer, 1989. 109-123
  • 9Pugliese A. An SEI epidemic model with varying population Size. In: Busenberg S, Martelli M, Ed.Differential Equation Models in Biology, Epidemiology and Ecology. Lecture Notes in Biomathematics 92.Belin, Heidelberg, New York: Springer, 1991. 121 -138
  • 10Pugliese A. Population models for diseases with no recovery. J Math biol, 1990, 28:65- 82

共引文献8

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部