期刊文献+

基于5G网络技术的智能扫地机器人控制算法研究

Research on Control Algorithm of Intelligent Floor SweepingRobot Based on 5G Network Technology
下载PDF
导出
摘要 为了实现5G移动通信网络下的扫地机器人智能控制,文章提出基于5G网络技术的智能扫地机器人控制算法,构建智能扫地机器人的运动学和动力学模型,采用多参量融合分析方法进行智能扫地机器人的控制约束参数分析。同时,为了在5G网络环境下实现智能扫地机器人的网络输出控制,采用动态反馈调节方法进行机器人控制过程中的误差调节,建立智能扫地机器人的输出稳定性控制模型,结合避障控制算法,实现智能扫地机器人的路径规划优化设计。仿真结果表明,采用该方法进行智能扫地机器人控制的输出稳定性较好,路径规划能力较强,提高了智能扫地机器人的避障性能和输出鲁棒性。 In order to realize the intelligent control of floor sweeping robot under 5G mobile communication network,an intelligent floor sweeping robot control algorithm based on 5G network technology was proposed,the kinematic and dynamic models of intelligent floor sweeping robot were constructed,the control constraint parameters of intelligent floor sweeping robot were analyzed by multi-parameter fusion analysis method,and the network output control of intelligent floor sweeping robot was realized in 5G network environment.The dynamic feedback adjustment method was used to adjust the error in the robot control process,and the output stability control model of the intelligent floor sweeper was established.Combined with the obstacle avoidance control algorithm,the path planning optimization design of the intelligent floor sweeping robot was realized,and the optimal design of the robot control algorithm was realized in the 5G network environment.The simulation results showed that the proposed method had good output stability and strong path planning ability,which improved the obstacle avoidance performance and output robustness of the intelligent floor sweeping robot.
作者 叶允英 YE Yunying(Ningde Vocational And Technical College,Fuan,Fujian 355000,China)
出处 《九江学院学报(自然科学版)》 CAS 2020年第3期52-56,共5页 Journal of Jiujiang University:Natural Science Edition
基金 国家自然科学基金项目(编号71934001) 安徽省级教学研究项目(编号2018jyxm1305)的成果之一。
关键词 5G网络技术 智能扫地机器人 控制算法 避障 5G network technology intelligent floor sweeper control algorithm obstacle avoidance
  • 相关文献

参考文献8

二级参考文献48

  • 1李二涛,张国煊,曾虹.基于最小二乘的曲面拟合算法研究[J].杭州电子科技大学学报(自然科学版),2009,29(2):48-51. 被引量:53
  • 2范路桥,蒋梁中,汪伟,姚锡凡,何春彬.排爆机器人双目立体视觉系统的研究和开发[J].计算机工程,2007,33(7):207-209. 被引量:7
  • 3孔新立,金丰年,蒋美蓉.恐怖爆炸袭击方式及规模分析[J].爆破,2007,24(3):88-92. 被引量:24
  • 4Jean G V. New robots planned {or bomb disposal teams :JJ. National Defense, 2011, 96(692) : 28 - 31.
  • 5Dakis A. Human presence detection: The navy has tri-service responsibility for EOD-related science and technology development [J]. Chips, 2011, 29(4) : 50 - 52.
  • 6ZENG Jianjun, YANG Ruqing, ZHANG Weijun. Research on semi-automatic bomb fetching for an EOD robot /-Jj. International Journal of Advanced Robotic Systems, 2008, 4(2) : 247 - 252.
  • 7Homsup N, Jariyanorawiss T, Homsup W. A control of a bomb disposal robot using a stereo scope vision [C://IEEE Southeast Con. Huntsville, AL, 2008, 293- 294.
  • 8Kennedy J, Eberhart R C. Particle swarm optimization LCJ// Proc of IEEE International Conference on Neural Networks. Piscataway, NJ : IEEE Service Center, 1995 : 1942 - 1948.
  • 9Kirkpatrick S, Gelat C D, Veccbi M P. Optimization by simulated annealing [J]. Science, 1983, 220:611 - 680.
  • 10Clere M, Kennedy J. The particle swarm-explosion, stability and convergence in a multi-dimension complex space [J]. IEEE Transactions on Evolutionary Computation, 2002, 6(1) : 58 - 73.

共引文献172

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部