期刊文献+

齐次可微函数的对角递减性与一类不等式的证明

The diagonal decreasing property of homogeneous differentiable functions and the proof of a class of inequalities
下载PDF
导出
摘要 研究了齐次可微函数的对角递减性.对角递减性可以被使用去证明许多不等式,如算术-几何(A-G)平均不等式, Schur不等式, Suranyi不等式等等.文中计算出了对角递减函数在非负三元二次型中出现的概率约为57%.为了弥补对角递减性的不足引入了分块对角递减性的概念.证明了在标准单形上严格正的齐次多项式都是分块对角递减函数. The diagonal decreasing property of homogeneous differentiable functions(DDF)is investigated in this article.It can be used to prove many inequalities,such as arithmetic geometric(A-G)mean inequality,Schur inequality,and Suranyi inequality.According to the calculation in this paper,the probability of occurrence of diagonal decreasing function in nonnegative ternary quadratic form is about 57%.In order to make up for the deficiency of diagonal decreasing,the concept of block diagonal decreasing is introduced.It is proved that strictly positive homogeneous polynomials on a standard simplex are block diagonal decreasing functions.
作者 姚勇 王挽澜 秦小林 YAO Yong;WANG Wan-lan;QIN Xiao-lin(Chengdu Institute of Computer Application,Chinese Academy Sciences,Chengdu 610041,China;School of Information Sciences and Technology,Chengdu University,Chengdu 610106,China)
出处 《西南民族大学学报(自然科学版)》 CAS 2020年第5期542-550,共9页 Journal of Southwest Minzu University(Natural Science Edition)
基金 中科院西部青年学者项目(201899) 四川省科技计划资助项目(2018GZDZX0041)。
关键词 齐次可微函数 对角递减函数 不等式 homogeneous differentiable function diagonal decreasing function(DDF),inequality
  • 相关文献

参考文献5

二级参考文献49

  • 1杨路.差分代换与不等式机器证明[J].广州大学学报(自然科学版),2006,5(2):1-7. 被引量:36
  • 2Yang Lu. Solving harder problems with lesser mathematics. Proceedings of the 10th Asian Technology Conference in Mathematics, Advanced Technology Council Mathematics Inc., Blacksburg, 2005.
  • 3Yong Yao. Termination of the sequence of sds sets and machine decision for positive semi-definite forms, http://arxiv.org/abs/0904.4030v1.
  • 4Polya G, Szego G. Problems and Theorems in Analysis. Berlin, Springer-Verlag, 1972.
  • 5Hardy G H, Littlewood J E, Polya G. Inequalities. Cambridge Univercity Press, Cambridge, 1952.
  • 6Catlin D W, D'Angelo J P. Positivity conditions for bihomogeneous polynomials. Math. Res. Lett., 1997, 4: 555-567.
  • 7Handelman D. Deciding eventual positivity of polynomials. Ergod. Th. and Dynam. Sys., 1986, 6: 57-79.
  • 8Habicht W. Uber die zerlegung strikte definter formen in qu~drate. Coment. Math. Helv., 1940, 12: 317-322.
  • 9Schweighofer M. An algorithmic approach to Schmudgen's positivstellensotz. J. Pure and Appl. Alg., 2002, 166: 307-319.
  • 10Schweighofer M. On the complexity of Schmfidgen's positivstellensotz. J. Complexity, 2004, 20: 529-543.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部