摘要
研究了齐次可微函数的对角递减性.对角递减性可以被使用去证明许多不等式,如算术-几何(A-G)平均不等式, Schur不等式, Suranyi不等式等等.文中计算出了对角递减函数在非负三元二次型中出现的概率约为57%.为了弥补对角递减性的不足引入了分块对角递减性的概念.证明了在标准单形上严格正的齐次多项式都是分块对角递减函数.
The diagonal decreasing property of homogeneous differentiable functions(DDF)is investigated in this article.It can be used to prove many inequalities,such as arithmetic geometric(A-G)mean inequality,Schur inequality,and Suranyi inequality.According to the calculation in this paper,the probability of occurrence of diagonal decreasing function in nonnegative ternary quadratic form is about 57%.In order to make up for the deficiency of diagonal decreasing,the concept of block diagonal decreasing is introduced.It is proved that strictly positive homogeneous polynomials on a standard simplex are block diagonal decreasing functions.
作者
姚勇
王挽澜
秦小林
YAO Yong;WANG Wan-lan;QIN Xiao-lin(Chengdu Institute of Computer Application,Chinese Academy Sciences,Chengdu 610041,China;School of Information Sciences and Technology,Chengdu University,Chengdu 610106,China)
出处
《西南民族大学学报(自然科学版)》
CAS
2020年第5期542-550,共9页
Journal of Southwest Minzu University(Natural Science Edition)
基金
中科院西部青年学者项目(201899)
四川省科技计划资助项目(2018GZDZX0041)。
关键词
齐次可微函数
对角递减函数
不等式
homogeneous differentiable function
diagonal decreasing function(DDF),inequality