期刊文献+

弱wakamatsu余倾斜模的若干注记

Some notes of weak wakamatsu cotilting modules
下载PDF
导出
摘要 利用代数表示论和同调代数的方法,给出了弱wakamatsu余倾斜模的若干等价刻画。证明了C是弱wakamatsu余倾斜模,当且仅当C是Π-self-orthogonal模且每个内射模E均是GC-内射模,当且仅当C是Π-self-orthogonal模且每个内射余生成子是GC-内射模。同时还证明了n-余倾斜模一定是弱wakamatsu余倾斜模。 Using methods of Algebra representation theories and homological algebra,some equivalent characterizations of weak wakamatsu cotilting modules are given.It is proved that C is a weak wakamatsu cotilting module,if and only if C is a Π-self-orthogonal module and E is GC-injective module for every injectve module E,if and only if C is a Π-self-orthogonal module and every injectve cogenerator is GC-injective module.And it is also proved that n-cotilting modules are weak wakamatsu cotilting modules.
作者 何东林 HE Dong-lin(School of Mathematics and Information Sciences,Longnan Teachers College,Longnan 742500,China)
出处 《陕西理工大学学报(自然科学版)》 2020年第5期89-92,共4页 Journal of Shaanxi University of Technology:Natural Science Edition
基金 甘肃省高等学校创新能力提升项目(2019B-224) 甘肃省高等学校创新基金资助项目(2020A-277)。
关键词 弱wakamatsu余倾斜模 n-余倾斜模 Π-self-orthogonal GC-内射模 weak wakamatsu cotilting modules n-cotilting modules Π-self-orthogonal GC-injective modules
  • 相关文献

参考文献2

二级参考文献2

  • 1Xiaoyan Yang,Zhongkui Liu.Gorenstein Projective, Injective, and Flat Complexes[J].Communications in Algebra.2011(5)
  • 2Edgar E. Enochs,Overtoun M. G. Jenda.Gorenstein injective and projective modules[J].Mathematische Zeitschrift.1995(1)

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部