期刊文献+

基于实测数据的量子遗传算法反演概率积分参数

Quantum genetic algorithm inversion of probability integral parameters based on measured data
下载PDF
导出
摘要 概率积分法作为开采沉陷预计的常用方法,其参数更好地解算能够提高开采沉陷预计的准确性和稳定性。遗传算法能够解决模矢法易陷入局部最优解的问题,但其本身有着易早熟、收敛速度慢的缺点。旨在引入量子遗传算法对概率积分法参数进行反演,其量子编码和旋转门能够很好地解决遗传算法的缺点,将模矢法、遗传算法、量子遗传算法进行对比,量子遗传算法在精度、稳定性和收敛速度上要优于其他两个算法,这对概率积分参数反演的精度提高有着促进作用。 As a commonly used method for mining subsidence prediction,the probability integral method can improve the accuracy and stability of mining subsidence prediction.The genetic algorithm can solve the problem that the modular vector method is easy to fall into the local optimal solution.It has the shortcomings of easy prematurity and slow convergence speed.This paper aims to introduce quantum genetic algorithm to invert the parameters of the probability integral method.Its quantum coding and revolving gate can solve the shortcomings of genetic algorithm very well.Compared with the quantum genetic algorithm,the quantum genetic algorithm is superior to the other two algorithms in accuracy,stability and convergence speed,which promotes the accuracy of the probability integral parameter inversion.
作者 汪涛 彭小强 陈兴达 徐越 赵祥硕 WANG Tao;PENG Xiaoqiang;CHEN Xingda;XU Yue;ZHAO Xiangshuo(School of Geomatics,Anhui University of Science and Technology,Huainan 232001,China;Key Laboratory of Aviation-aerospace-ground Cooperative Monitoring and Early Warning of Coal Mining-induced Disasters of Anhui Higher Education Institutes,Huainan 232001,China;Coal Industry Engineering Research Center of Mining Area Environmental and Disaster Cooperative Monitoring,Huainan 232001,China)
出处 《黑龙江工程学院学报》 CAS 2020年第5期1-5,共5页 Journal of Heilongjiang Institute of Technology
基金 国家自然科学基金资助项目(41474026) 国家自然科学基金资助项目(41602357) 淮南矿业(集团)有限责任公司基金资助项目(HNKY-JTJS(2017)-122)。
关键词 QGA算法 SGA算法 概率积分法 参数精度 QGA algorithm SGA algorithm probability integral method parameter accuracy
  • 相关文献

参考文献8

二级参考文献79

共引文献204

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部