期刊文献+

基于改进的集成经验模态分解法的润滑油磨粒检测研究

Research of lubricating oil particle sensor modeling based on improved integrated empirical modal decomposition method
下载PDF
导出
摘要 为了提高油液磨粒检测问题的准确率,本文提出了改进的集成经验模态分解方法,其能够将带有噪声干扰的传感器输出信号分解为多个有真实物理意义的固有模态函数,分离出有效输出信号与噪声干扰,同时探究了改进的集成经验模态分解方法的参数值,实现了其超参数的自适应设定;然后确立了磨粒半径与分离出的有效信号的波峰值、波谷值、峰峰值等特征值的数学模型,之后采用多项式拟合方法拟合出磨粒半径与这些特征值的模型曲线,分析获取了磨粒的尺寸、数量、磁性等信息,并通过实验验证了拟合曲线的准确性。 In order to solve the problem of oil particle detection,the integration of empirical mode decomposition(IIEMD)method is improved.First the sensor output signal with noise is decomposed into limited physical significance of intrinsic mode functions(IMFs),output signal and the noise are isolated effectively,the parameter value of the improved IIEMD method is explored and the adaptive setting of its hyperparameter is realized;then the mathematical models of the abrasive radius and the characteristic values such as the peak,trough,peak-to-trough of the effective signal are established,after the model curves of the radius of abrasive particles and these characteristic values are fitted by polynomial fitting method,finally the size,quantity,magnetism and other information of the abrasive particles are obtained,and the accuracy of the fitting curve is verified by experiments.
作者 苏连成 郭杰 苏来进 SU Liancheng;GUO Jie;SU Laijin(School of Electrical Engineering,Yanshan University,Qinhuangdao,Hebei 066004,China;PLA Unit 61623,Beijing 100842,China)
出处 《燕山大学学报》 CAS 北大核心 2020年第5期477-486,共10页 Journal of Yanshan University
基金 河北省自然科学基金资助项目(F2015203412)。
关键词 改进的EEMD法 自适应原则 信号处理 特征提取 improved EMD method principle of adaptation signal processing feature extraction
  • 相关文献

参考文献4

二级参考文献53

  • 1王玉田,蔡璐璐,徐宇馨.基于小波阈值滤波的光纤比色测温仪的信号处理[J].传感技术学报,2005,18(1):174-176. 被引量:4
  • 2陈书涵,严珩志.反向双激励螺旋管式磨粒传感器的传感特性研究[J].仪表技术与传感器,2005(9):6-7. 被引量:12
  • 3唐新安,谢志明,王哲,吴金强.风力机齿轮箱故障诊断[J].噪声与振动控制,2007,27(1):120-124. 被引量:47
  • 4李兵,张培林,任国全,吴铮.基于灰色信息融合技术的磨粒识别方法[J].润滑与密封,2007,32(9):103-106. 被引量:1
  • 5Le Cone J M, Hervieu E, Ishii M, et al.. Benchmarking and im- provements of measurement techniques for local-time- average two-phase flow parameters [J]. Experiments in Fluids, 2003,35 (5): 448-458.
  • 6Francois F, Gamier J, Cubizolles G. A new data acquisition system for binary random signal application in multi- phase flow measure- ment[J].Measurement Science and Technology,2003(14): 929-942.
  • 7Gnanadurai D, Sadasivam V. An efficient adaptive thresholding technique for wavelet based image deniosing [J]. Internationl Jour- nal of Signal Precessing, 2005,2 (2): 114-119.
  • 82012全国油液监测智能系统及其应用研讨会在广州隆重召开[J/OL].[2012—06—15].http:∥epub.cnki.net/kns/brief/default_result.aspx.
  • 9Schlumberger and Cambridge Viscosity Collaborate on HPHT Viscosity Standards[J/OL].[2009—04—27].http:∥www.machinerylubrication.com/read/27602/Schlumb-erger-Cambridge-viscosity-standards.
  • 10Visco SCAN On-line Viscosity Sensor[EB/OL].[2014—06—01].http:∥www.kittiwake.com/sites/default/files/MA-K18427-KW%20Viscosity%20Sensor.pdf.

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部