摘要
在风机大尺度化与风场大型化的趋势下,如何通过合适的控制策略以降低尾流损失成为关键问题。以包括30台NREL-5MW风机并采用5行6列平行四边形布置方式的小型风场为研究对象,基于显示尾流模型,以各风机偏航角度为优化参数,风场总功率为目标函数,使用粒子群优化算法对比分析了偏航控制对不同风速、风向、湍流强度下的风场性能提升效果。结果表明,偏航控制优化可在风向与风机行或列方向平行时发挥明显效果,当风机行列间距为4倍风轮直径且湍流强度为5%时,在不同风速下偏航控制可分别将风场总体发电量提升15%~20%,但对于布置间距大于7倍风轮直径或湍流强度高于15%时的风场,其作用十分有限,总体发电量提升在5%以内。
As the scales of both wind turbine and wind farm keep enlarging,how to reduce the wind turbine wake loss effect becomes a key problem.Based on analytical wake model,we choose a small wind farm that contains 30 NREL-5MW wind turbines arranged in parallelogram as research object and introduce the particle swarm algorithm to estimate and compare the yaw-control optimization results under different wind regimes.The results show that yaw control can remarkably improve the performance of a wind farm when the wind is parallel to the row or the column direction.With a 4-rotor-diameter streamwise spacing and inflow turbulent intensity of 5%,yaw control increases the total power output by 15%~20%under different wind speeds.However,when the turbulence intensity is higher than 15%or the streamwise spacing reaches 7 rotor diameters,the effect of yaw control is quite limited,with the total power output increase being less than 5%.
作者
宁旭
曹留帅
万德成
NING Xu;CAO Liushuai;WAN Decheng(Computational Marine Hydrodynamics Lab,State Key Laboratory of Ocean Engineering,School of Naval Architecture,Ocean and Civil Engineering,Shanghai Jiao Tong University,Shanghai 200240,China)
出处
《海洋工程》
CSCD
北大核心
2020年第5期80-90,共11页
The Ocean Engineering
基金
国家自然科学基金项目(51879159)
国家重点研发计划项目(2019YB1704200,2019YFCO312400)
长江学者奖励计划(T2014099)
上海市优秀学术带头人计划(17XD1402300)
工信部数值水池创新专项课题(2016-23/09)。
关键词
风场
尾流模型
粒子群优化
偏航控制
wind farm
wake model
particle swarm algorithm
yaw control