期刊文献+

基于尾流模型的风场偏航控制优化研究 被引量:10

Study of wind farm optimization through yaw control based on analytical wake model
下载PDF
导出
摘要 在风机大尺度化与风场大型化的趋势下,如何通过合适的控制策略以降低尾流损失成为关键问题。以包括30台NREL-5MW风机并采用5行6列平行四边形布置方式的小型风场为研究对象,基于显示尾流模型,以各风机偏航角度为优化参数,风场总功率为目标函数,使用粒子群优化算法对比分析了偏航控制对不同风速、风向、湍流强度下的风场性能提升效果。结果表明,偏航控制优化可在风向与风机行或列方向平行时发挥明显效果,当风机行列间距为4倍风轮直径且湍流强度为5%时,在不同风速下偏航控制可分别将风场总体发电量提升15%~20%,但对于布置间距大于7倍风轮直径或湍流强度高于15%时的风场,其作用十分有限,总体发电量提升在5%以内。 As the scales of both wind turbine and wind farm keep enlarging,how to reduce the wind turbine wake loss effect becomes a key problem.Based on analytical wake model,we choose a small wind farm that contains 30 NREL-5MW wind turbines arranged in parallelogram as research object and introduce the particle swarm algorithm to estimate and compare the yaw-control optimization results under different wind regimes.The results show that yaw control can remarkably improve the performance of a wind farm when the wind is parallel to the row or the column direction.With a 4-rotor-diameter streamwise spacing and inflow turbulent intensity of 5%,yaw control increases the total power output by 15%~20%under different wind speeds.However,when the turbulence intensity is higher than 15%or the streamwise spacing reaches 7 rotor diameters,the effect of yaw control is quite limited,with the total power output increase being less than 5%.
作者 宁旭 曹留帅 万德成 NING Xu;CAO Liushuai;WAN Decheng(Computational Marine Hydrodynamics Lab,State Key Laboratory of Ocean Engineering,School of Naval Architecture,Ocean and Civil Engineering,Shanghai Jiao Tong University,Shanghai 200240,China)
机构地区 上海交通大学
出处 《海洋工程》 CSCD 北大核心 2020年第5期80-90,共11页 The Ocean Engineering
基金 国家自然科学基金项目(51879159) 国家重点研发计划项目(2019YB1704200,2019YFCO312400) 长江学者奖励计划(T2014099) 上海市优秀学术带头人计划(17XD1402300) 工信部数值水池创新专项课题(2016-23/09)。
关键词 风场 尾流模型 粒子群优化 偏航控制 wind farm wake model particle swarm algorithm yaw control
  • 相关文献

参考文献3

二级参考文献13

  • 1FRANDSEN S,BARTHELMIE R,PRYOR S,et al.Analytical modelling of wind speed deficit in large offshore wind farms[J].Wind Energy,2006,9(1/2):39-53.
  • 2CHRISTLANSEN M B,HASAGER C B.Wake effects of large offshore wind farms identified from satellite SAR[J].Remote Sensing of Environment,2005,98(2/3):251-268.
  • 3VERMEER L J,SORENSEN J N,CRESPO A.Wind turbine wake aerodynamics[J].Progress in Aerospace Sciences,2003,39:467-510.
  • 4PATEL M R.Wind and power solar systems[M].Boca Raton:CRC Press,1999.
  • 5AMMARA I,LECLERC C,MASSON C.A viscous three-dimensional differential/actuator-disk method for the aerodynamic analysis of wind farms[J].J Sol Energy Eng,2002,124(4):345-356.
  • 6MOSETH G,POLONI C,DIVIACCO B.Optimization of wind turbine positioning in large wind farms by of a genetic algorithm[J].J Wind Eng Ind Aerodyn,1994,51(1):105-106.
  • 7GRADY S A,HUSSAINI M Y,ABDUILAH M M.Placement of wind turbines using genetic algorithms[J].Renewable Energy,2005,30(2):259-270.
  • 8MARMIDIS G,LAZAROU S,PYRGIOTI E.Optimal placement of wind turbines in a wind park using Monte Carlo simulation[J].Renewable Energy,2008,33(7):1455-1460.
  • 9王丰.风电场风能资源评估及风机优化布置研究[D].南京:河海大学,2009.
  • 10BURTON T,SHARPE D,JENKINS N,et al.Wind energy handbook[M].England:John Wiley & Sons,2001:68.

共引文献28

同被引文献70

引证文献10

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部