期刊文献+

云服务资源调度机制的协同与优化研究 被引量:8

The Collaboration and Optimization of Resource Scheduling Mechanism for Cloud Service
原文传递
导出
摘要 数据中心是云计算的核心基础设施,但传统数据中心存在成本高、服务器使用效率低等问题.共享经济模式能够将闲置带宽集成起来进行二次调度分配,大幅缓解当前计算需求与计算能力之间的矛盾.文章为共享云服务提供商及其多名用户的效益优化设计一个新的服务机制,并从博弈论的视角出发,构建模型来对云服务提供商以及其多名用户之间的关系进行了描述.首先,云服务提供商通过选择提供适当的服务器,并针对用户请求制定合适的分配策略,以降低能源消耗同时满足用户需求.其次,对于每个用户,文章建立了考虑任务完成度和时间效率的效用函数,使得用户在云服务提供商的分配策略下最大化自身的效益,且用户之间博弈结果是一般纳什均衡.最后,文章通过设计迭代算法来模拟上述服务机制的全过程,仿真数值也说明了选择合适的服务器并制定适当的分配策略能够有效地提高云服务提供商和用户的效益.结论表明,迭代算法能够对传统的云服务机制进行改进,是一种切实有效的创新方法,也为中国共享经济背景下云服务产业的革命性发展提供了理论依据. In this paper,we designed a new service mechanism to optimize the benefits of shared cloud service providers and their multiple users.Firstly,cloud service providers can reduce energy consumption and meet users’needs by choosing appropriate servers and formulating appropriate allocation strategies for user requests.Secondly,for each user,this paper establishes a utility function considering task completion and time efficiency,which maximizes the user’s own benefit under the distribution strategy of cloud service providers,and the game result between users is general Nash equilibrium.Finally,we design an iterative algorithm to simulate the whole process of the above-mentioned service mechanism.The simulation results also show that choosing the appropriate server and formulating the appropriate allocation strategy can effectively improve the benefits of cloud service providers and users.The conclusion shows that the iterative algorithm can improve the traditional cloud service mechanism,and it is a practical and effective innovation method.
作者 李桂君 寇晨欢 胡军 李慧嘉 LI Guijun;KOU Chenhuan;HU Jun;LI Huijia(School of Management Science and Engineering,Central University of Finance and Economics,Beijing 100081)
出处 《系统科学与数学》 CSCD 北大核心 2020年第8期1365-1383,共19页 Journal of Systems Science and Mathematical Sciences
基金 国家自然基金(71473285) 黑龙江省哲学社会科学研究规划项目(19GLC165)资助课题。
关键词 云计算 迭代算法 非合作博弈 利润优化 资源配置 变分不等式 Cloud computing iterative algorithm non-cooperative game profit optimization resource configuration variational inequality
  • 相关文献

参考文献2

二级参考文献22

  • 1王庆波,金漳,何乐,等.虚拟化与云计算[M].北京:电子工业出版社,2010.
  • 2Cloud computing [ EB/OL 1 [ 2011-09-01 ]. http : //en.wikipedia, org/wiki/Cloud computing .
  • 3Michael A,Armando F. Above the clouds :A berkeley view of cloud computing[ EB/OL ] [ 2011-09-02 ]. http ://www. berkeley, edu/Pubs/TechRpts/2009/EECS-2009- 28, pdf.
  • 4Nell P, Grance T. The NIST definition of cloud computing E 1t]. National Institute of Standard and Technology, U S Department of Commerce ,2010.
  • 5Sun Corporation. The white paper on cloud computing ar- chitecture [ R ]. 2009.
  • 6刘鹏.云计算技术基础[M].2版.北京:电子工业出版社,201l.
  • 7Dean J, Ghemawat S. MapReduce: Simplified data pro- cessing on large clusters [ J ]. Communications of the ACM ,2008 ,51 ( 1 ) :107-113.
  • 8VMware virtualization technology [ EB/OL ] [ 2011-09- 02 ]. http ://www. vmware, com/virtu',dizatioiv/what-is-vir- tualization, html.
  • 9Goyal A, Dadizadeh S. A survey on cloud computing [ R]. Teehnieal Report for CS 508,2009.
  • 10Kamoun F. Virtualizing the datacenter without compromi- sing server performance [J]. ACM Ubiquity 2009,2009.Doi:10.1145/1595422.1595424.

共引文献124

同被引文献148

引证文献8

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部