期刊文献+

基于CPHD的双层粒子滤波目标跟踪算法

Two-Layer Particle Filter Tracking Algorithm Based on CPHD
下载PDF
导出
摘要 常规基于势概率假设密度滤波(Cardinalized Probability Hypothesis Density,CPHD)的粒子滤波(Particle Fil⁃ter,PF)跟踪算法应用于多目标跟踪时,容易遇到因粒子数量增加而带来的运算效率下降、目标数目估计不准的问题。文章基于常规粒子滤波CPHD跟踪算法,通过部署双层粒子,提出基于势概率假设密度滤波的双层粒子滤波(Two-Layer Particle Filter-CPHD,TLPF-CPHD)算法,以便提高目标数目及状态估计精度。仿真实验结果证明,相比于常规PF-CPHD算法,新算法具有更好的目标数目和状态估计准确性。 When the conventional particle filter(PF)tracking algorithm based on cardinalized probability hypothesis densi⁃ty(CPHD)is applied to the multi-target tracking,it is easy to encounter the problems of decreased computational efficien⁃cy and inaccurate estimation of the target number due to the increase in the number of particles.In this paper,based on the conventional PF-CPHD tracking algorithm,TLPF-CPHD algorithm is proposed to improve the number of targets and the accuracy of state estimation.The simulation results show that compared with the conventional particle filter tracking al⁃gorithm based on CPHD,the new algorithm has significant performance advantages in target number and state estimation accuracy.
作者 李树甫 黄勇 裴家正 LI Shufu;HUANG Yong;PEI Jiazheng(The 91049th Unit of PLA,Qingdao Shandong 266102,China;Navy Aviation University,Yantai Shandong 264001,China)
机构地区 [ 海军航空大学
出处 《海军航空工程学院学报》 2020年第4期291-296,共6页 Journal of Naval Aeronautical and Astronautical University
基金 山东省高等学校“青创科技计划”支持基金资助项目(2019KJN026)。
关键词 多目标跟踪 双层粒子滤波 势概率假设密度 随机有限集 target tracking two-layer particle filter cardinalized probability hypothesis density random finite set
  • 相关文献

参考文献3

二级参考文献36

  • 1曲长文,黄勇,苏峰.基于动态规划的多目标检测前跟踪算法[J].电子学报,2006,34(12):2138-2141. 被引量:27
  • 2Goodman I,Mahler R,and Nguyen H.Mathematics of Data Fusion[M].Norwell,MA,Kluwer,1997:131-175.
  • 3Mahler R.Multitarget Bayes filtering via first-order multitarget moments[J].IEEE Transactions on Aerospace and Electronic Systems,2003,39(4):1152-1178.
  • 4Vo B N,Singh S,and Doucet A.Sequential Monte Carlo methods for Bayesian multi-target filtering with random finite sets[J].IEEE Transactions on Aerospace and Electronic Systems,2005,41(4):1224-1245.
  • 5Clark D,Vo B T,Vo B N,and Godsill S.Gaussian mixture implementations of probability hypothesis density filters for non-linear dynamical models[C].IET Seminar on Target Tracking and Data Fusion:Algorithms and Applications,Birmingham,UK,April 15-16,2008:21-28.
  • 6Mahler R and Martin L.PHD filter of high order in target number[J].IEEE Transactions on Aerospace and Electronic Systems,2007,43(4):1523-1543.
  • 7Mahler R.PHD filter for nonstandard targets,Ⅱ:Unresolved targets[C].12th International Conference on Information Fusion,Las Vegas,NV,USA,July 6-9,2009:922-929.
  • 8Ulmke M,Franken D,and Schmidt M.Missed detection problems in the cardinalized probability hypothesis density filter[C].11th International Conference on Information Fusion,Cologne,Germany,June 30-July 3,2008:1-7.
  • 9Erdinc O,Willett P,and Coraluppi S.The Gaussian mixture cardinalized PHD tracker on MSTWG and SEABAR'07 datasets[C].11th International Conference on Information Fusion,Cologne,Germany,June 30-July 3,2008:1-8.
  • 10Vo B T,Vo B N,and Cantoni A.Analytic implementations of the cardinalized probability hypothesis density filter[J].IEEE Transactions on Signal Processing,2007,55(7):3553-3567.

共引文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部