摘要
常规基于势概率假设密度滤波(Cardinalized Probability Hypothesis Density,CPHD)的粒子滤波(Particle Fil⁃ter,PF)跟踪算法应用于多目标跟踪时,容易遇到因粒子数量增加而带来的运算效率下降、目标数目估计不准的问题。文章基于常规粒子滤波CPHD跟踪算法,通过部署双层粒子,提出基于势概率假设密度滤波的双层粒子滤波(Two-Layer Particle Filter-CPHD,TLPF-CPHD)算法,以便提高目标数目及状态估计精度。仿真实验结果证明,相比于常规PF-CPHD算法,新算法具有更好的目标数目和状态估计准确性。
When the conventional particle filter(PF)tracking algorithm based on cardinalized probability hypothesis densi⁃ty(CPHD)is applied to the multi-target tracking,it is easy to encounter the problems of decreased computational efficien⁃cy and inaccurate estimation of the target number due to the increase in the number of particles.In this paper,based on the conventional PF-CPHD tracking algorithm,TLPF-CPHD algorithm is proposed to improve the number of targets and the accuracy of state estimation.The simulation results show that compared with the conventional particle filter tracking al⁃gorithm based on CPHD,the new algorithm has significant performance advantages in target number and state estimation accuracy.
作者
李树甫
黄勇
裴家正
LI Shufu;HUANG Yong;PEI Jiazheng(The 91049th Unit of PLA,Qingdao Shandong 266102,China;Navy Aviation University,Yantai Shandong 264001,China)
出处
《海军航空工程学院学报》
2020年第4期291-296,共6页
Journal of Naval Aeronautical and Astronautical University
基金
山东省高等学校“青创科技计划”支持基金资助项目(2019KJN026)。
关键词
多目标跟踪
双层粒子滤波
势概率假设密度
随机有限集
target tracking
two-layer particle filter
cardinalized probability hypothesis density
random finite set