摘要
本文基于大量的车牌识别数据,运用宏观交通流模型,构建了城市交通干路的宏观基本图,分析了以单日车牌识别数据构建的宏观基本图在长期观测下的稳定性以及临界密度同最大流量的分布特征。在此基础上,利用统计分析方法,比较了多种不同天数的车牌识别数据选取方式下所构建的宏观基本图的稳定性。结果显示,低密度下的宏观基本图具有较高的稳定性,高密度下基本图稳定性随统计数据天数的增加而提高,且利用连续多个工作日的数据选取方式能迅速有效地获得范围误差较小的宏观基本图。
This paper used a large number of license plate recognition(LPR) data and the macroscopic traffic flow model to construct a macroscopic fundamental diagram(MFD) of urban arterial roads, and analyzed the long-term stability of the MFD constructed from single-day LPR data and the distribution characteristics between maximum traffic volume and critical density. On this basis, the stability of MFDs based on the multiple selection methods of LPR data were compared using statistical analysis methods. The results show that the MFD at low density has high stability, and the stability of the MFD at high density increases with more LPR data, and the MFD with a small range error can be constructed quickly and effectively by selecting the LRP data from multiple consecutive working days.
作者
张南
林云志
叶彭姚
ZHANG Nan;LIN Yunzhi;YE Pengyao(School of Transportation and Logistics,Southwest Jiaotong University,Chengdu 611756,China)
出处
《综合运输》
2020年第9期48-53,119,共7页
China Transportation Review
基金
自然科学基金项目(61873216)。
关键词
车牌识别数据
宏观基本图
城市干路
稳定性
统计分析
License plate recognition data
Macroscopic fundamental diagram(MFD)
Urban arterial roads
Stability
Statistical analysis