期刊文献+

具有振荡约束的自然选择萤火虫优化算法 被引量:5

Natural selection firefly optimization algorithm with oscillation and constraint
原文传递
导出
摘要 针对基本萤火虫算法高维求解精度低、收敛速度慢、易早熟等缺点,提出一种具有振荡、约束和自然选择机制的萤火虫算法,引入二阶振荡因子,平衡上一代个体对当前代个体的影响,防止萤火虫个体陷入局部极值;加入基于sigmoid函数的约束因子,动态调整个体移动距离,在算法后期避免萤火虫个体在理论最优值附近因过度扰震而导致精度降低的情况;采用基于高斯积分倒数递减趋势的自然选择,在保持个体多样性的同时加快算法的收敛速度.理论分析证明了改进算法的收敛性和时间复杂度.通过对10个不同特征标准测试函数多个维度的函数优化仿真实验,测试结果表明改进算法的寻优精度和收敛速度均有明显提升,尤其是在高维情况下,几乎对于所有函数仍能找到理论最优解,较好地解决了萤火虫算法不适于高维求解的问题. Aiming at the shortcomings of low precision in high dimension, slow convergence speed and precocity in the basic firefly algorithm, the firefly algorithm with oscillation, constraint and natural selection mechanism is proposed.Firstly, the second-order oscillation factor is introduced to balance the influence of the previous generation of individuals on the current generation of individuals, so as to prevent the individuals of fireflies from falling into local extremum.Then, the constraint factor based on sigmoid function is added to dynamically adjust the moving distance of individual,so as to avoid the situation that the individual of firefly caused by excessive disturbance near the theoretical optimal value leads to the reduction of precision in the later stage of the algorithm. Finally, natural selection based on the decreasing trend of reciprocal Gaussian integral is used to keep individual diversity and accelerate the convergence speed of the algorithm. The convergence and time complexity of the improved algorithm are proved by theoretical analysis. Through the simulation of 10 standard functions with multiple dimensions and different characteristics, the test results show that the optimization accuracy and convergence speed of the OCSFA(natural selection firefly optimization algorithm with oscillation and constraint) are obviously improved. Especially in the case of high dimension, the theoretical optimum can still be found for almost all functions, which better solves the problem of the unsuitability of the firefly algorithm for high dimension solution.
作者 刘景森 毛艺楠 李煜 LIU Jing-sen;MAO Yi-nan;LI Yu(Institute of Intelligent Networks System,Henan University,Kaifeng 475004,China;College of Software,Henan University,Kaifeng 475004,China;Institute of Management Science and Engineering,Henan University,Kaifeng 475004,China)
出处 《控制与决策》 EI CSCD 北大核心 2020年第10期2363-2371,共9页 Control and Decision
基金 河南省重点研发与推广专项项目(182102310886) 河南大学研究生“英才计划”项目(SYL18060145)。
关键词 萤火虫算法 二阶振荡 SIGMOID函数 自然选择 寻优精度 收敛性 firefly algorithm second-order oscillation sigmoid function natural selection optimization accuracy convergence
  • 相关文献

参考文献7

二级参考文献81

  • 1王俊伟,汪定伟.粒子群算法中惯性权重的实验与分析[J].系统工程学报,2005,20(2):194-198. 被引量:85
  • 2曾三友,魏巍,康立山,姚书振.基于正交设计的多目标演化算法[J].计算机学报,2005,28(7):1153-1162. 被引量:36
  • 3刘洪波,王秀坤,谭国真.粒子群优化算法的收敛性分析及其混沌改进算法[J].控制与决策,2006,21(6):636-640. 被引量:62
  • 4高尚,汤可宗,蒋新姿,杨静宇.粒子群优化算法收敛性分析[J].科学技术与工程,2006,6(12):1625-1627. 被引量:19
  • 5Yang X S. A new metaheuristic bat-inspired algorithm [J]. in: Nature Inspired Cooperative Strate- gies for Optimization (NICSO 2010)(Eds J R Gonzalez et al.), SCI 284, 2010: 65-74.
  • 6YANG X S. Bat algorithm for multi-objective optimization[J]. Int J Bio-Inspired Computation, 2011, 3(5): 267-274.
  • 7Yang X S, Gandomi A H. Bat algorithm: a novel approach for global engineering optimization[J]. Engineering Computation, 2012, 29(5): 267-289.
  • 8Gandomi A H, Yang X S, Alavi A H, et al. Bat algorithm for constrained optimization tasks [J]. Neural Comput & Applic. DOI: 10.1007/s00521-012-1028-9.
  • 9Yang X, Deb S. Cuckoo search via Ltvy flights[C]. World Congress on Nature & Biologically Inspired Computing. Piscataway: IEEE Publications, 2009: 210-214.
  • 10Civicioglu E Besdok E. A conceptual comparison of the Cuckoo-search, particle swarm optimization, differential evolution and artificial bee colony algorithms[J]. Artificial Intelligence Review, 2011, 39(4): 315-346.

共引文献180

同被引文献49

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部