期刊文献+

社交网络用户影响力的发展动态及知识图谱研究 被引量:4

Research on the Development Trend and Knowledge Map of Social Network Users’Influence
原文传递
导出
摘要 【目的/意义】随着互联网的迅速发展,网络已经成为人们获取信息和交流信息的主要渠道,社交网络是互联网的延伸,是一个非常重要的社交平台,通过这个虚拟平台,人或组织之间可以进行沟通、交往等社会活动,从而改变人们的生产活动、生活方式、人际交往以及思维方式。对社会生活的各个领域和人自身的生存与发展产生广泛而深远的影响。【方法/过程】通过对社交网络上的用户行为进行有规律地统计和预测,以微博行为对象,集中研究微博中用户发布、浏览、评论、转发这些具体行为,进行跟踪、统计记录,并分析这些行为存在的规律。提出了一种基于用户行为的动态影响力PageRank算法来评价用户影响力。【结果/结论】在研究用户影响力评价算法优缺点的基础上,得出用户的转发行为及时间因素对用户的影响力评价有极其重要的作用。 【Purpose/significance】With the rapid development of Internet,network has become the main channel of access to information and communication,social networking is an extension of the Internet,it is a very important social platform,people and organizations communicate,contact and do other social activities through the virtual platform,so as to change people’s production,life style,interpersonal,and way of thinking.It has a wide and profound influence on various fields of social life and the survival and development of human beings.【Method/process】Through regular statistics and prediction of users’behaviors on social networks,tracking and recording specific behaviors such as posting,browsing,commenting and forwarding by users in Weibo,and analyzing the existing rules of these behaviors,this paper proposes a dynamic influence PageRank algorithm based on user behavior to evaluate user influence.【Result/conclusion】From the perspective of human behavior dynamics and user behavior,the time interval of users’forwarding behavior in Weibo is analyzed and the power distribution is obtained.
作者 邹文武 ZOU Wen-wu(Jilin Institute of Education,Changchun 130022,China)
机构地区 吉林省教育学院
出处 《情报科学》 CSSCI 北大核心 2020年第9期107-115,共9页 Information Science
关键词 社交网络 知识图谱 节点 影响力 social network knowledge map node influence
  • 相关文献

参考文献10

二级参考文献162

  • 1刘毅.网络舆情与政府治理范式的转变[J].前沿,2006(10):140-143. 被引量:90
  • 2刘毅.略论网络舆情的概念、特点、表达与传播[J].理论界,2007(1):11-12. 被引量:312
  • 3同义词词林扩展版[EB/OL].[2011-03-03].http://www.ir-lab.org/.
  • 4周荣庭,方冰.Web2.0网站新闻传播的特性比较与趋势[J].网络传播,2009(11):60-61.
  • 5Nitin Agarwal, Huan Liu. Identifying the influential bloggers in a community [C]// Proceedings of the in- ternational conference on Web search and web data mining. USA: Seattle, 2008:207-217.
  • 6Cha M, Haddadi H. Benevenuto, measuring user influence in twitter., the million follower fallacy [C]//Proc. of International AAAI Conference on Weblogs and Social Media (ICWSM). Washington, 2010 : 125- 134.
  • 7Jianshu Weng, Ee-Peng Lim, Jing Jiang, et al. Twit- terRank: finding topic-sensitive influential twitterers [C]//Proceedings of the third ACM international con- ference on Web search and data mining. USA: New York, 2010:69-86.
  • 8Kimura M, Saito K, Nakano R. Extracting influential nodes for information diffusion on a social network [C] //Proceedings of the 22nd AAAI Conference on Arti- ficial Intelligence. Canada Vancouver, 2007. AAAI, 1371-1376.
  • 9Page L. Brin S, Motwani tL The pagerank citation ranking: Bringing order to the web [R]. Stanford U- niversity, Technical report, 1998.
  • 10汪小帆,李翔,陈关荣.网络科学导论[M].北京:高等教育出版社,2012.

共引文献251

同被引文献62

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部