期刊文献+

数字钻孔全景影像中结构面特征智能识别方法 被引量:7

Intelligent identification method for rock discontinuities properties by digital borehole panoramic images
下载PDF
导出
摘要 数字钻孔全景影像是识别深部岩体结构面的主要方法,传统解译方法主要依靠手动操作完成,其结果存在较强的人为性、主观性和较大误差。针对数字钻孔全景影像技术,提出了一种考虑结构面图像灰度分布特点的智能识别新方法。通过钻孔图像的灰度化、降噪预处理后利用结构面定位信号特征值D定位结构面,获取其所在区域图像;再进行边缘检测、阈值分割及形态学等处理,通过拟合边缘曲线并结合数学表征方法实现了结构面特征(产状、隙宽等几何参数)的智能化识别。通过对地下水封洞库工程深部岩体数字钻孔影像的实例分析,运用本智能识别方法获得结构面特征信息相对于传统人工识别方法,其结果的准确性和客观性更强、批量识别效率更高。这对这数字钻孔影像的智能、快速识别具有一定的参考价值。 Digital borehole panoramic imaging technique is the main method to identify the discontinuities properties of deep rock mass.The traditional identification method mainly relies on manual operation,therefore the results are artificial,subjective and inaccurate.A new intelligent identification method is proposed considering gray level distribution of rock discontinuities for the digital borehole panoramic imaging technique.The panoramic images are firstly pre-processed by graying and noise reduction,and positioned the joints by the eigenvalue,D,to obtain the joints region images.The joints images are processed after edge detection,threshold partition and morphology processing.Finally,intelligent identification of discontinuities characteristics are realized by joints edge curve fitting and mathematical calculation,which are dip direction,dip and aperture.Compared with a traditional artificial method,the proposed technique is more accurate and objective,and more efficient in batch images identification.
作者 宋琨 孙驰 安冬 仪政 Song Kun;Sun Chi;An Dong;Yi Zheng(Key Laboratory of Geological Hazards on Three Gorges Reservoir Area,Ministry of Education,China Three Gorges University,Yichang Hubei,443002,China;Hubei Key Laboratory of Disaster Prevention and Mitigation,China Three Gorges University,Yichang Hubei,443002,China)
出处 《地质科技通报》 CAS CSCD 北大核心 2020年第5期17-22,共6页 Bulletin of Geological Science and Technology
基金 国家自然科学基金项目(41702378,42077239)。
关键词 钻孔全景影像 结构面特征 图像处理 智能识别 数学表征 digital borehole panoramic image discontinuities characteristics image processing intelligent identification mathematical calculation
  • 相关文献

参考文献13

二级参考文献141

共引文献132

同被引文献98

引证文献7

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部