摘要
针对滚动轴承剩余寿命难预测的情况,在分析了轴承原始信号特征提取困难的基础上,提出了基于多尺度卷积神经网络的轴承剩余寿命预测方法。该方法将原始振动加速度信号作为输入,依次经过浅层特征提取模块、深层特征提取模块、数据融合模块和输出模块这4部分进行处理,最后输出预测的剩余寿命。同时提出了一种新型的改进均方误差作为网络的损失函数,取得了较好的效果。通过对轴承寿命预测实验的测试数据进行预测分析,该方法能够有效的预测轴承的剩余寿命。
It is difficult to predict the remaining life of rolling bearings,because the original signal characteristics of rolling bearings are not obvious,a method for predicting the remaining life of bearings based on multi-scale convolutional neural networks has been proposed.This method takes the original vibration acceleration signal as input,and then processes it through four parts:shallow feature extraction module,deep feature extraction module,data fusion module and output module,finally outputs the predicted remaining life.At the same time,an improved mean square error was proposed as a loss function,which achieved good results.By predicting and analyzing the test data of the bearing life prediction experiment,this method can effectively predict the remaining life of the bearing.
作者
孙鑫
孙维堂
SUN Xin;SUN Wei-tang(Shenyang Institute of Computing Technology,Chinese Academy of Science,Shenyang 110168,China;China University of Chinese Academy of Sciences,Beijing 100049,China)
出处
《组合机床与自动化加工技术》
北大核心
2020年第10期168-171,共4页
Modular Machine Tool & Automatic Manufacturing Technique
基金
“高档数控机床与基础制造装备”国家科技重大专项课题:航空发动机典型零件加工设备国产数控系统换脑工(2017ZX04011004)。
关键词
多尺度
卷积神经网络
轴承
剩余寿命
损失函数
multiscale
convolutional neural network
bearing
remaining life
loss function