期刊文献+

基于多尺度卷积神经网络的轴承剩余寿命预测 被引量:12

Research on Remaining Life Prediction of Bearing Based on Multi-scale Convolution Neural Network
下载PDF
导出
摘要 针对滚动轴承剩余寿命难预测的情况,在分析了轴承原始信号特征提取困难的基础上,提出了基于多尺度卷积神经网络的轴承剩余寿命预测方法。该方法将原始振动加速度信号作为输入,依次经过浅层特征提取模块、深层特征提取模块、数据融合模块和输出模块这4部分进行处理,最后输出预测的剩余寿命。同时提出了一种新型的改进均方误差作为网络的损失函数,取得了较好的效果。通过对轴承寿命预测实验的测试数据进行预测分析,该方法能够有效的预测轴承的剩余寿命。 It is difficult to predict the remaining life of rolling bearings,because the original signal characteristics of rolling bearings are not obvious,a method for predicting the remaining life of bearings based on multi-scale convolutional neural networks has been proposed.This method takes the original vibration acceleration signal as input,and then processes it through four parts:shallow feature extraction module,deep feature extraction module,data fusion module and output module,finally outputs the predicted remaining life.At the same time,an improved mean square error was proposed as a loss function,which achieved good results.By predicting and analyzing the test data of the bearing life prediction experiment,this method can effectively predict the remaining life of the bearing.
作者 孙鑫 孙维堂 SUN Xin;SUN Wei-tang(Shenyang Institute of Computing Technology,Chinese Academy of Science,Shenyang 110168,China;China University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《组合机床与自动化加工技术》 北大核心 2020年第10期168-171,共4页 Modular Machine Tool & Automatic Manufacturing Technique
基金 “高档数控机床与基础制造装备”国家科技重大专项课题:航空发动机典型零件加工设备国产数控系统换脑工(2017ZX04011004)。
关键词 多尺度 卷积神经网络 轴承 剩余寿命 损失函数 multiscale convolutional neural network bearing remaining life loss function
  • 相关文献

参考文献6

二级参考文献51

  • 1杨宇,于德介,程军圣.基于EMD与神经网络的滚动轴承故障诊断方法[J].振动与冲击,2005,24(1):85-88. 被引量:146
  • 2奚立峰,黄润青,李兴林,刘中鸿,李杰.基于神经网络的球轴承剩余寿命预测[J].机械工程学报,2007,43(10):137-143. 被引量:56
  • 3SHAO Y,NEZU K. Prognosis of remaining bearing life using neural networks[J].Journal of Systems and Control Engineering,2000,(13):217-230.
  • 4GEBRAEEL N,LAWLEY M,LIU R. Residual life predictions from vibration-based degradation signals:A neral network approach[J].IEEE Tran on Induxttrial Electronics,2004,(03):694-700.
  • 5HUANG Runqing,XI Lifeng,LI Xinglin. Residual life predictions for ball bearings based on self-organizing map and back propagation neural network methods[J].Mechanical Systems and Signal Processing,2007.193-207.
  • 6PAN Yuna,CHEN Jin,LI Xinglin. Spectral entropy:A complementary index for rolling element bearing performance degradation assessment[J].Journal of Mechanical Engineering System,2009.1223-1231.
  • 7ZARETSKY E V,POPLAWSKI J V,PETERS S M. Comparision of life theories for rolling element bearing[J].Tribology Transactions,1996,(02):237-248.
  • 8LI Y,BILLIGTON S,ZHANG C. Adaptive prognostics for rolling element bearing condition[J].Mechanical Systems and Signal Processing,1999,(01):103-113.
  • 9VAPNIK V N. Statistical learning theory[M].New York:wiley,1998.
  • 10MIN Sunghwan,LEE Jumin,HAN Ingoo. Hybrid genetic algorithms and support vector machines for bankruptcy prediction[J].Expert Systems with Applications,2006,(03):652-660.

共引文献312

同被引文献92

引证文献12

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部