期刊文献+

炭黑表面能与甲苯抽出物透光率的关系 被引量:2

Relationship between Surface Free Energy of Carbon Black and Light Transmittance of Toluene Extract
下载PDF
导出
摘要 选取具有相同比表面积、不同甲苯抽出物透光率的炭黑N134,采用反相色谱测试其表面能,考察炭黑表面能与甲苯抽出物透光率的关系。结果表明:当甲苯抽出物透光率低时,炭黑N134晶体边缘的高能位点被不完全燃烧的原料油或者烃类物质占据,炭黑N134的表面能色散分量低;当甲苯抽出物透光率为77%时,炭黑N134的表面能色散分量为233.6 mJ·m^-2,甚至比甲苯抽出物透过率为92%的炭黑N234低约24%;当甲苯抽出物透光率高于82%时,随着甲苯抽出物透光率的提高,炭黑N134的表面能色散分量呈线性提高;当甲苯透光率为99%时,炭黑N134的表面能色散分量达到511.0 mJ·m^-2。炭黑生产企业可通过控制工艺和原材料提高炭黑纯净度,以提高炭黑质量。 Surface energy of carbon black(CB)N134 with the same specific surface area and different light transmittance of toluene extract(LTTE)was measured by inverse gas chromatography to investigate the effects of LTTE of CB on surface energy.The results showed that,the dispersive component of surface energy of CB N134 was low when the LTTE was low,because the high energy site of CB crystal edge was occupied by the incomplete combustion oil and alkanes.When the LTTE was 77%,the dispersive component of surface energy of CB N134 was 233.6 mJ·m^-2,which was about 24%lower than that of CB N234 with 92%LTTE.The dispersive component of surface energy of CB N134 increased linearly with the LTTE increasing when the LTTE was higher than 82%and reached 511.0 mJ·m^-2 when the LTTE was 99%.The manufacturers of CB could improve purity and quality of CB by controlling production process and raw material.
作者 路明 张红霞 和富金 李明 张超 衣黎明 LU Ming;ZHANG Hongxia;HE Fujin;LI Ming;ZHANG Chao;YI Liming(EVE Rubber Institute Co.,Ltd,Qingdao 266045,China)
出处 《橡胶工业》 CAS 2020年第9期709-712,共4页 China Rubber Industry
基金 国家重点研发计划项目(2017YFB0307100)。
关键词 炭黑 表面能 色散分量 甲苯抽出物 透光率 正烷烃 吸附自由能 反相色谱 carbon black surface energy dispersive component toluene extract light transmittance n-alkanes adsorption free energy inverse gas chromatography
  • 相关文献

参考文献4

二级参考文献101

  • 1罗义文,漆继红,印永祥,戴晓雁.等离子体裂解天然气制纳米炭黑和乙炔[J].化学工程,2004,32(4):42-45. 被引量:6
  • 2李炳炎,于宝林,刘敏.炭黑技术讲座 第1讲 炭黑的分类、命名和制造[J].橡胶工业,2007,54(1):59-63. 被引量:9
  • 3Fowkes F M.Determination of interfacial tensions,contact angles,and dispersion forces in surfaces by assuming additivity of intermolecular interactions in surfaces[J].J.Phys.Chem.,1962,66:382.
  • 4Owens D L,Wendt R C.Estimation of the surface free energy of polymers[J].J.Appl.Polym.Sci.,1969,13:1 741-1 747.
  • 5Kaelble D H,Uy K C.Reinterpretation of organic liquid-poly(tetrafluoroethylene) surface interactions[J].J.Adhes.,1970(2):50-60.
  • 6Ban L L,Hess W M.Interactions Entre les Elastomeres et les Surfaces Solides Ayant une Action Renforcante[M].Collogues Internationaux du C.N.R.S.,1975.
  • 7Ban L L,Hess W M,Papazian L A.New studies of carbon rubber gel[J].Rubber Chem.Technol.,1974,47(4):858-894.
  • 8Wolff S,Wang M J,Tan E H.Filler elastomer interactions.Part VII.Study on bound rubber[J].Rubber Chem.Tech-nol.,1993,66(2):163-177.
  • 9Wang M J,Wolff S,Donnet J B.Filler-elastomer interactions Ⅰ.Silica surface energies and interactions with model compounds[J].Rubber Chem.Technol.,1991,64(4):559-576.
  • 10Wang M J,Wolff S,Donnet J B.Filler-elastomer interactions Ⅲ.Carbon black-surface energies and interactions with elastomer analogs[J].Rubber Chem.Technol.,1991,64(5):714-736.

共引文献22

同被引文献16

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部