摘要
针对海上电网发电机的故障诊断研究,提出一种基于大数据挖掘技术的发电机故障诊断与预测性维护方法。该方法利用大数据挖掘与人工智能故障诊断技术,研究发电机监测点与发电机状态之间的内在联系,进一步对发电机的健康状态进行评估,根据评估发电机的健康状态值提出预测性维修意见。通过对实际电网发电机组的监测,佐证了该方法发可行性与有效性。
Based on the research of offshore grid generator,a fault diagnosis and predictive maintenance method based on big data mining technology is proposed.This method uses big data mining and artif icial intelligence fault diagnosis technology to research the internal relationship between the place of generator monitoring and status of generator;furthermore,to evaluate the generator status of health,and to propose predictive maintenance advice based on the evaluation of generator health state value.The feasibility and effectiveness of the proposed method are verif ied by monitoring the actual power grid generating sets.
作者
倪先锋
NI Xian-feng(CNOOC(China)Tianjin Branch Co.,Ltd,Tianjin 300452,China)
出处
《化工管理》
2020年第29期136-137,163,共3页
Chemical Engineering Management
关键词
大数据
人工智能
电网
发电机
故障诊断
预测性维护
big data
artif icial intelligence
power grid
generator
fault diagnosis
predictive maintenance