期刊文献+

基于壳聚糖多孔碳的制备及电容性能研究 被引量:1

Preparation of Chitosan-Based Porous Carbon and Its Capacitance Performance
下载PDF
导出
摘要 以壳聚糖为碳源和氮源,采用预碳化处理和KOH活化两步法制备了壳聚糖多孔碳材料,考察了活化剂KOH用量对电极材料形貌、结构以及电容性能的影响。结果表明:当KOH与预碳化壳聚糖质量比为0.6∶1时,制备的多孔碳材料KOH-CTS-0.6具有最优的电化学性能。KOH-CTS-0.6具有大比表面积(1348 m^2·g^-1),含有丰富的N、O元素(2.9%N和7.4%O)。在电流密度为0.5 A·g^-1时,KOH-CTS-0.6的比电容为235.2 F·g^-1,显示出优秀的倍率能力;在电流密度为10 A·g^-1的大电流时,其比电容依然高达178.6 F·g^-1。此外,该材料还具有良好的循环稳定性,500次循环后比电容保持率为94%。 Using chitosan as the carbon source and nitrogen source,we prepared chitosan porous carbon material by pre-carbonization treatment and KOH activation.Moreover,we investigated the effcts of the dosage of activator KOH on the morphology,structure and capacitance performance of the electrode material.The results show that,when the mass ratio of KOH to pre-carbonized chitosan is 0.6∶1,the porous carbon KOH-CTS-0.6 has the best electrochemical performance.Meanwhile,KOH-CTS-0.6 has a high specific surface area(1348 m^2·g^-1)and high N,O dopant concentrations(2.9%N and 7.4%O).The specific capacitance of KOH-CTS-0.6 is 235.2 F·g^-1 at 0.5 A·g^-1,which is still as high as 178.6 F·g^-1 at 10 A·g^-1.In addition,the material also has good cycling stability,and the specific capacitance retention rate is 94%after 500 cycles.
作者 姚建锋 马爱军 段博涛 刘学东 邹爱东 王利民 何卫 刘东 YAO Jianfeng;MA Aijun;DUAN Botao;LIU Xuedong;ZOU Aidong;WANG Limin;HE Wei;LIU Dong(Huzhou Power Supply Company,State Grid Zhejiang Electric Power Company,Huzhou 313000,China;Zhejiang Talent Electric Power Group Co.,Ltd.,Huzhou 313000,China;Wuhan NARI Electric Power Engineering Technology&Equipment Co.,Ltd.,Wuhan 430415,China;School of Chemistry and Environmental Engineering,Wuhan Institute of Technology,Wuhan 430205,China)
出处 《化学与生物工程》 CAS 2020年第9期17-22,58,共7页 Chemistry & Bioengineering
基金 国网浙江省电力公司科技项目(2019-HUZJTKJ-04) 国家自然科学基金项目(51401150)。
关键词 壳聚糖 氮掺杂 多孔碳 超级电容器 chitosan nitrogen doping porous carbon supercapacitor
  • 相关文献

参考文献6

二级参考文献53

  • 1(a) Conway, B.; Birss, V.; Wojtowicz, J. J. Power Sources 1997, 66 (1), 1.
  • 2(b) Simon, E; Gogotsi, Y. Nature Materials 2008, 7 (11), 845.
  • 3(c) Candelaria, S. L.; Shao, Y.; Zhou, W.; Li, X.; Xiao, J.; Zhang, J. G.; Wang, Y.; Liu, J.; Li, J.; Cao, G. NanoEnergy 2012, 1 (2), 195.
  • 4(d) Chen, S.; Xing, W.; Duan, J.; Hu, X.; Qiao, S. Z. J. Mater. Chem. A 2013, I (9), 2941.
  • 5Zhang, L. L.; Zhao, X. Chem. Soc. Rev. 2009, 38 (9), 2520. doi: 10.1039/b813846j.
  • 6(a) Chen, X. Y.; Chen, C.; Zhang, Z. J.; Xie, D. H.; Deng, X.; Liu, J. W. J. Power Sources 2013, 230, 50. doi: 10.1016/j. jpowsour.2012.12.054.
  • 7(b) Kim, T.; Jung, G.; Yoo, S.; Suh, K. S.; Ruoff, R. S.ACS Nano 2013, 7 (8), 6899.
  • 8(c) Calvo, E.; Lufrano, F.; Staiti, P.; Brigandi, A.; Arenillas, A.; Men6ndez, J. J. Power Sources 2013, 241,776.
  • 9(d) Chert, M.; Kang, X.; Wumaier, T.; Dou, J.; Gao, B.; Hart, Y.; Xu, G.; Liu, Z.; Zhang, L. J. Solid State Electrochem. 2013, 17 (4), 1005.
  • 10(a) Tsai, W. Y.; Gao, E C.; Daffos, B.; Taberna, E L.; Perez, C. R.; Gogotsi, Y.; Favier, F. Electrochem. Commun. 2013, 34, 109. doi: 10.1016/j.elecom.2013.05.031.

共引文献36

同被引文献8

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部