期刊文献+

木糖在哺乳动物体内功能的研究

Study on the function of xylose in mammals
原文传递
导出
摘要 木糖(xylose)是自然界中仅次于葡萄糖的第二大糖类物质,作为五碳醛糖,木糖多以缩聚化合物形式组成半纤维素等。尽管针对植物和微生物中木糖的代谢与结构的相关研究众多,但是在动物尤其哺乳动物中的研究较少。本综述总结了哺乳动物体内木糖的吸收、来源与利用,参与的糖链结构,及木糖相关结合蛋白的相关研究,为阐明木糖在哺乳动物体内的重要作用及其潜在的功能研究提供参考。 Xylose is the second largest carbohydrate in nature after glucose.As a pentaaldehyde,xylose exists mostly as hemicellulose in the form of polycondensation compounds.Although there are many studies related to the metabolism and structure of xylose in plants and microorganisms,there are fewer studies in animals,especially mammals.This review summarized the absorption,source and utilization of xylose in mammals,participates in sugar chain structure,and related research on xylose-related binding proteins,provided a theoretical summary for elucidating the important role of xylose in mammals,and provided potential references for its functional studies.
作者 任夏萌 陈闻天 REN Xiameng;CHEN Wentian(Laboratory for Functional Glycomics,The College of Life Sciences,Northwest University,Xi'an 710000,China)
出处 《生命的化学》 CAS CSCD 2020年第8期1328-1336,共9页 Chemistry of Life
基金 国家自然科学基金项目青年科学基金项目(31500130) 中央高校基本科研业务费专项资金资助项目(310829171006)。
关键词 木糖 哺乳动物 糖基化修饰 糖结合蛋白 xylose mammal glycosylation modification glycoprotein
  • 相关文献

参考文献6

二级参考文献185

  • 1[8]Zimmermann DR, Ruoslahti E. Multiple domains of the large fibroblast proteoglycan, versican. Embo J 1989;8(10):2975-81.
  • 2[9]Shinomura T, Nishida Y, Ito K, Kimata K. cDNA cloning of PG-M, a large chondroitin sulfate proteoglycan expressed during chondrogenesis in chick limb buds. Alternative spliced multiforms of PG-M and their relationships to versican. J Biol Chem 1993; 268(19):14461-9.
  • 3[10]Yamada H, Watanabe K, Shimonaka M, Yamaguchi Y.Molecular cloning of brevican, a novel brain proteoglycan of the aggrecan/versican family. J Biol Chem 1994;269(13):10119-26.
  • 4[11]Goldstein LA, Zhou DF, Picker L J, Minty CN, Bargatze RF, Ding JF, Butcher EC. A human lymphocyte homing receptor, the hermes antigen, is related to cartilage proteoglycan core and link proteins. Cell 1989; 56(6):1063-72.
  • 5[12]Perkins S J, Nealis AS, Dudhia J, Hardingham TE. Immunoglobulin fold and tandem repeat structures in proteoglycan N-terminal domains and link protein. J Mol Biol 1989; 206(4):737-53.
  • 6[13]Mow VC, Zhu W, Lai WM, Hardingham TE, Hughes C, Muir H. The influence of link protein stabilization on the viscometric properties of proteoglycan aggregate solutions. Biochim Biophys Acta 1989; 992(2):201-8.
  • 7[14]Watanabe H, Gao L, Sugiyama S, Doege K, Kimata K,Yamada Y. Mouse aggrecan, a large cartilage proteoglycan: protein sequence, gene structure and promoter sequence. Biochem J 1995; 308(Pt 2):433-40.
  • 8[15]Doege K J, Sasaki M, Kimura T, Yamada Y. Complete coding sequence and deduced primary structure of the human cartilage large aggregating proteoglycan, aggrecan. Human-specific repeats, and additional alternatively spliced forms. J Biol Chem 1991; 266(2):894-902.
  • 9[53]Poole AR, Ionescu M, Swan A, Dieppe PA. Changes in cartilage metabolism in arthritis are reflected by altered serum and synovial fluid levels of the cartilage proteoglycan aggrecan. Implications for pathogenesis. J Clin Invest 1994; 94(1):25-33.
  • 10[54]Poole AR. Immunochemical markers of joint inflammation, skeletal damage and repair: where are we now? Ann Rheum Dis 1994; 53(1):3-5.

共引文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部