期刊文献+

基于代理模型的常压塔过程多目标优化 被引量:1

Surrogate Based Multi-objective Optimization for Atmospheric Tower
下载PDF
导出
摘要 针对常压塔过程进化优化时存在的耗时计算问题,提出采用RBF、Kriging代理模型研究常压塔操作过程的多目标进化优化。在优化迭代中分别采用了"最优点"及"期望值提高"(ExI)两种插值方法,并采用了模糊规则对代理模型进行了调用。优化结果表明:采用代理模型可以减少进化中对机理模型的调用次数,从而提高优化效率;对常压塔来说,与RBF的"最优点"插值方案相比,采用Kriging的ExI点插值建立的代理模型精度更高,优化效果也更理想;调节常压塔的原油混炼比及其它操作条件可以在相同的CO2排放下提高经济效益。 Aiming at the time-consuming computation problem of process optimization in atmospheric tower,in this paper,a multi-objective evolutionary optimization strategy of atmospheric tower operation process is studied based on RBF and Kriging surrogate models respectively.In the optimization iteration,two interpolation methods,namely the’best point’and’expected improvement’are adopted respectively,and the fuzzy rules are used to manage the surrogate models.The optimization results show that using surrogate model can reduce the number of invocation to the mechanism model in evolution,and thus improve the optimization efficiency.For atmospheric tower,the surrogate model established by Kriging’s ExI interpolation has higher precision and better optimization effect compared with the RBF’s’best point’interpolation strategy.The adjustment of the crude oil mixing ratio and other operating conditions of the atmospheric tower can improve the economic efficiency under the same CO2 emission.
作者 刘磊 史旭华 LIU Lei;SHI Xu-hua(Faculty of Electrical Engineering and Computer Science,Ningbo University,Ningbo 315211,China)
出处 《控制工程》 CSCD 北大核心 2020年第9期1614-1620,共7页 Control Engineering of China
基金 国家自然科学基金项目(61773225,61503204)。
关键词 多目标优化 代理模型 常压塔过程 进化优化 建模 Multi-objective optimization surrogate model atmospheric tower evolutionary optimization modeling
  • 相关文献

参考文献3

二级参考文献32

  • 1穆雪峰,姚卫星,余雄庆,刘克龙,薛飞.多学科设计优化中常用代理模型的研究[J].计算力学学报,2005,22(5):608-612. 被引量:152
  • 2岳金彩,郑世清,韩方煜.多目标遗传算法及在过程优化综合中的应用[J].计算机与应用化学,2006,23(8):748-752. 被引量:12
  • 3江爱朋,邵之江,陈曦,方学毅,耿大钊,郑小青,钱积新.乙烯生产流程中联塔模拟与优化[J].化工学报,2006,57(9):2128-2134. 被引量:17
  • 4姜斌,梁士锋.化学工程中多目标遗传算法的应用[J].现代化工,2007,27(7):66-69. 被引量:4
  • 5Li Zheng(李征). The system-based optimization of the injection molding process and its Parallel Computing [D]. Dalian:Dalian University of Technology, 2013.
  • 6Gao Yuehua(高月华). Optimization methods based on Kriging surrogate model and their application in injection modeling [D]. Dalian: Dalian University of Technology, 2009.
  • 7Jones D R, Schonlau M, Welch W J. Efficient global optimization of expensive black-box functions[J] . Journal of Global Optimization, 1998, 13(4): 455-492.
  • 8Schonlau M. Global versus local search in constrained optimization of computer models [J]. Lecture Notes-Monograph Series, 1998, 34(1): 11-25.
  • 9Sobester A, Leary S J, Keanr A J. On the design of optimization strategies based on global response surface approximation model [J]. Journal of Global Optimization, 2005, 33(1): 41-59.
  • 10Sykulski A M, Adams N M, Jennings N R. On-line adaptation of explotation in the one-armed bandit with covariates peoblem// Machine Learning and Applications[C]. Fourth International Conference. Washington, D.C, USA, 2010.

共引文献30

同被引文献5

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部