期刊文献+

一种基于深度神经网络的临床记录ICD自动编码方法 被引量:4

An automatic ICD coding method for clinical records based on deep neural network
下载PDF
导出
摘要 随着国际疾病分类(international classification of diseases,ICD)编码数量的增加,基于临床记录的人工编码难度和成本大大提高,自动ICD编码技术引起了广泛的关注。提出一种基于多尺度残差图卷积网络的自动ICD编码技术,该技术采用多尺度残差网络来捕获临床文本的不同长度的文本模式,并基于图卷积神经网络抽取标签之间的层次关系,以加强自动编码能力。在真实医疗数据集MIMIC-III上的实验结果表明,该方法的P@k和Micro-F1分别为72.2%和53.9%,显著提高了预测性能。 With the increase in the number of the international classification of diseases (ICD) codes,the difficulty and cost of manual coding based on clinical records have greatly increased,and automatic ICD coding technology has attracted widespread attention.A multi-scale residual graph convolution network automatic ICD coding technology was proposed.This technology uses a multi-scale residual network to capture text patterns of different lengths of clinical text and extracts the hierarchical relationship between labels based on the graph convolutional neural network to enhance the ability of automatic coding.The experimental results on the real medical data set MIMIC-III show that the P@k and Micro-F1 of this method are 72.2% and 53.9%,respectively,which significantly improves the prediction performance.
作者 杜逸超 徐童 马建辉 陈恩红 郑毅 刘同柱 童贵显 DU Yichao;XU Tong;MA Jianhui;CHEN Enhong;ZHENG Yi;LIU Tongzhu;TONG Guixian(School of Computer Science and Technology,University of Science and Technology of China,Hefei 230027,China;Huawei Technologies Co.,Ltd.,Hangzhou 310007,China;The First fliated Hospital of USTC,Hefei 230027.China)
出处 《大数据》 2020年第5期1-15,共15页 Big Data Research
基金 国家自然科学基金资助项目(No.U1605251,No.61703386) 中央高校基本科研业务费专项资金项目(No.WK911000014) 安徽省重点研发计划项目(No.1804b06020377)。
关键词 ICD编码 多尺度 残差网络 图卷积网络 ICD coding multi-scale residual network graph convolutional network
  • 相关文献

同被引文献14

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部