期刊文献+

基于二维深度卷积网络的旋转机械故障诊断 被引量:20

ROTATING MACHINERY FAULT DIAGNOSIS BASED ON TWO-DIMENSIONAL CONVOLUTION NEURAL NETWORK
下载PDF
导出
摘要 针对旋转机械振动信号复杂且难以提取有效故障特征的问题,提出了一种短时傅里叶变换和二维深度卷积网络相结合的故障诊断方法。首先对旋转机械振动信号进行短时傅里叶变换,得到时频图;接着将时频图输入到二维深度卷积网络中进行识别,得到最终分类结果。将该方法分别应用于滚动轴承与齿轮箱故障诊断中,在凯斯西储大学滚动轴承数据集、PHM2009直齿齿轮箱数据集上均取得了较好效果,正确率优于将时域信号直接输入到经典CNN中,验证了该方法的优越性。 In order to extract effective features of complex signals,a fault diagnosis method combining short-time Fourier transform and two-dimensional convolution neural network is proposed.First,a short-time Fourier transform is performed on the rotating mechanical vibration signal to obtain a time-frequency map.Then,the time-frequency map is input into a two-dimensional convolution neural network for identification,and a final classification result is obtained.The method is applied to the fault diagnosis of rolling bearing and gearbox,and has achieved good results in the data of the Case Western Reserve University and the PHM2009 dataset.The correct rate is better than the direct comparison of the original signal into CNN,which verifies the superiority of the method.
作者 张立智 徐卫晓 井陆阳 谭继文 ZHANG LiZhi;XU WeiXiao;JING LuYang;TAN JiWen(Mechanical and Automotive Engineering,Qingdao University of Technological,Qingdao 266520,China)
出处 《机械强度》 CAS CSCD 北大核心 2020年第5期1039-1044,共6页 Journal of Mechanical Strength
基金 国家自然科学基金项目(51475249) 山东省重点研发计划项目(2018GGX103016) 山东省高等学校科技计划项目(J15LB10)资助。
关键词 滚动轴承 齿轮箱 故障诊断 深度卷积网络 短时傅里叶变换 Rolling bearing Gearbox Fault diagnosis Convolution neural network Short-time Fourier transform
  • 相关文献

参考文献3

二级参考文献29

  • 1于德介,陈淼峰,程军圣,杨宇.基于EMD的奇异值熵在转子系统故障诊断中的应用[J].振动与冲击,2006,25(2):24-26. 被引量:31
  • 2GRAHAM-ROWE D, GOLDSTON D, DOCTOROW C, et al. Big data: Science in the petabyte era[J]. Nature, 2008, 455(7209): 8-9.
  • 3HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
  • 4KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems, 2012: 1097-1105.
  • 5BALDI P, SADOWSKI P, WHITESON D. Searching for exotic particles in high-energy physics with deep learning[J]. Nature Communications, 2014, 5(1): 1-9.
  • 6WORDEN K, STASZEWSKI W J, HENSMAN J J. Natural computing for mechanical systems research: A tutorial overview[J]. Mechanical Systems and Signal Processing, 2011, 25(1): 4-111.
  • 7BENGIO Y. Learning Foundations and Trends 2(1): 1-127. deep architectures for AI[J] in Machine Learning, 2009,.
  • 8ERHAN D, BENGIO Y, COURVILLE A, et al. Why does unsupervised pre-training help deep learning?[J]. The Journal of Machine Learning Research, 2010, 11: 625-660.
  • 9VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[C]//Proceedings of the 25th International Conference on Machine Learning, ACM, 2008: 1096-1103.
  • 10JARDINE A K S, LIN D, BANJEVIC D. A review on machinery diagnostics and prognostics implementingcondition-based maintenance[J]. Mechanical Systems and Signal Processing, 2006, 20(7): 1483-1510.

共引文献332

同被引文献205

引证文献20

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部