摘要
利用信息几何中的统计流形理论和自然梯度流形学习定位方法,研究了基于接收信号强度(RSS)的无线传感器网络自定位问题.首先,通过概率密度函数构造了一个曲指数族定位模型;然后,针对给定初始状态值的未知目标节点定位问题,结合梯度下降法,提出了基于此模型的最优非线性估计方法及其改进算法.梯度下降法的良好性质和仿真结果表明,这些算法有很好的收敛效果和更高的定位精度.
Using statistical manifold theory in information geometry and natural gradient manifold learning localization method,the self-localization problem of wireless sensor networks based on received signal strength(RSS)was studied.First,a curved exponential family localization model was constructed according to probability density function.Then,aiming at the problem of locating unknown target nodes with given initial state values,combining gradient descent method,an optimal non-linear estimation method based on this model and its improved algorithm were proposed.The good properties of gradient descent method and simulation results show that these algorithms possess better convergence effect and higher positioning accuracy.
作者
塞拉斯
许皓
宋扬
孙华飞
MIRAU Silas;XU Hao;SONG Yang;SUN Hua-fei(School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China;School of Mathematics and Information, China West Normal University, Nanchong, Sichuan 637002, China)
出处
《北京理工大学学报》
EI
CAS
CSCD
北大核心
2020年第10期1138-1142,共5页
Transactions of Beijing Institute of Technology
基金
北京市科委创新资助项目(Z161100005016043)。
关键词
统计流形
接收信号强度
流形学习
最优非线性估计
自然梯度
statistical manifold
received signal strength
manifold learning
optimal nonlinear estimation
natural gradient