期刊文献+

基于姿态估计的静态图像跌倒检测方法 被引量:3

Fall detection method in still image based on pose estimation
下载PDF
导出
摘要 针对基于可穿戴设备传感器、视频分析和环境传感器的跌倒检测方法储存资源受限、计算资源消耗大和精度低的缺点,提出了一种基于姿态估计的静态图像跌倒检测方法。利用卷积神经网络提取人体的姿态估计,通过人体的姿态估计判断出人体是否为跌倒状态,利用分类网络进行跌倒姿态的验证。实验结果表明,基于姿态估计的静态图像跌倒检测方法识别率高、计算资源消耗低、速度快。 Aiming at the problem that fall detection method of wearable device sensor,video analysis and environmental sensor has the disadvantages of limited storage resources,high computational resource consumption and low precision,a fall detection method in still image based on pose estimation is proposed.The method uses the convolutional neural network(CNN)to extract the pose estimation of the human body,and judges whether the people is a fall state through the pose estimation of the human body,and uses the classification network to verify the fall posture.The experimental results show that the fall detection method in still image based on pose estimation has high recognition rate,low computational resource consumption and fast speed.
作者 杨海清 石珏 YANG Haiqing;SHI Jue(College of Information Engineering,Zhejiang University of Technology,Hangzhou 310023,China)
出处 《传感器与微系统》 CSCD 2020年第10期132-134,共3页 Transducer and Microsystem Technologies
关键词 跌倒检测 姿态估计 卷积神经网络 静态图像 fall detection pose estimation convolutional neural networks(CNN) still image
  • 相关文献

参考文献4

二级参考文献25

  • 1姚畅,钱盛友,侯周国.基于神经网络的多传感器火灾预测数据处理[J].传感器技术,2005,24(11):68-70. 被引量:9
  • 2Eklund M, Hansen T, Sastry S. Information technology for assisted living at home: Building a wireless infrastructure for assisted living[ C]//Submitted to the 27th Annual International Conference of the EMBS,2005:127 -132.
  • 3Luo Suhuai,Hu Qingmao. A dynamic motion pattern analysis approach to fall detection[ C ]//IEEE International Workshop on Biomedical Circuits & Systems ,2004:53 -56.
  • 4Bromiley P A, Courtney P,Thacker N A. Design of a visual system for detecting natural events by the use of an independent visual estimate : A human fall detector [ C ]//Empirical Evaluation Methods in Computer Vision,2002:231 -235.
  • 5Doughty K, Cameron K. Primary and secondary sensing techniques for fall detection in the home[ R]. Proceedings of Hospital without Walls, City University, London, 1999 : 104 -116.
  • 6Barnes N M, Edwards N H, Rose D A D, et al. Lifestyle monitoring : Technology for supported independence [ J ]. IEE Computing and Control Engineering Journal, 1998,169 (174) :520 -526.
  • 7Chen Jay, Kwong Karric , Chang Dennis, et al. Wearable sensors for reliable fall detection [ C ]//Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, 2005 : 1203 -1209.
  • 8Nyan M N,Francis E H,Manimaran M,et al. Garment-based detection of falls and activities of daily living using 3-axis MEMS accelerometer [ J ]. Journal of Physics : Conference Series, 2006 (34) : 1059 -1067.
  • 9Mallat S G. A theory for muhiresolution signal decomposition:The wavelet representation[J]. IEEE Trans Pattern Anal Machine Intell,1989,11 ( 7 ) :674 -693.
  • 10Bajcsy R, Chen J, Kwong K, et al. Fall detection using wireless sensor networks[ C ]//Submitted to the 27th Annual International Conference of the EMBS,2005:759-765.

共引文献123

同被引文献23

引证文献3

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部