期刊文献+

基于非局部理论的黏弹性基体上压电纳米板热-机电振动特性研究 被引量:7

Thermo-electro-mechanical vibration responses of piezoelectric nanoplates embedded in viscoelastic medium via nonlocal elasticity theory
下载PDF
导出
摘要 基于非局部弹性理论研究黏弹性基体上压电纳米板的热-机电振动特性。综合考虑非局部效应、压电效应以及温度场、电场等因素影响,根据Kirchhoff板理论和Hamilton原理建立黏弹性基体上压电纳米板的热-机电振动特性分析模型,然后利用Galerkin条形传递函数方法进行求解,得到一般边界条件下压电纳米板固有频率的半解析解。通过与文献结果进行对比,验证所建分析模型与求解方法的有效性,并在此基础上系统分析非局部效应、边界条件、外电压、温度变化梯度等对压电纳米板振动特性的影响规律。结果表明,所建立的分析模型及其求解方法在分析黏弹性基体上压电纳米板的热-机电振动特性问题中准确有效。 Thermo-electro-mechanical vibration of piezoelectric nanoplates embedded in viscoelastic medium was investigated via nonlocal elasticity theory.Considering nonlocal effect,piezoelectric effect,viscoelasticity of surrounding medium and thermo-electro-mechanical loadings simultaneously,governing equations of piezoelectric nanoplates were derived,and the natural frequencies were obtained by introducing the Galerkin strip distributed transfer function method.The developed model was validated by comparing the obtained results with those available in literature.The influences of nonlocal parameter,boundary conditions,external electric voltage and increment temperature were also examined in detail.The results demonstrate the efficiency of the developed model for thermo-electro-mechanical vibration analysis of piezoelectric nanoplates embedded in viscoelastic medium.
作者 张大鹏 雷勇军 段静波 ZHANG Dapeng;LEI Yongjun;DUAN Jingbo(College of Aerospace Science and Engineering,National University of Defense Technology,Changsha 410073,China;Department of Engineering Mechanics,Shijiazhuang Tiedao University,Shijiazhuang 050043,China)
出处 《振动与冲击》 EI CSCD 北大核心 2020年第20期32-41,共10页 Journal of Vibration and Shock
基金 国家自然科学基金(11872372,11702325) 国防科技大学科研计划(ZK17-02-06)。
关键词 压电纳米板 黏弹性基体 振动特性 非局部弹性理论 传递函数方法 piezoelectric nanoplates viscoelastic medium vibration characteristics nonlocal elasticity theory transfer function method
  • 相关文献

参考文献4

二级参考文献32

  • 1朱年勇,于虹,黄庆安.纳机械谐振器的非线性特性分析[J].电子器件,2005,28(1):35-37. 被引量:3
  • 2宋震煜,于虹.纳米梁非线性振动的动力学分析[J].微纳电子技术,2006,43(3):145-149. 被引量:6
  • 3虞吉林 郑哲敏.一种非局部弹塑性连续体模型与裂纹尖端附近的应力分布[J].力学学报,1984,16(5):485-494.
  • 4Eringen A C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves [ J ]. Journal of Applied Physics, 1983, 54 (9) : 4703 -4710.
  • 5Wang C M, Kitipomchai S, Lira C W. Beam bending solutions based on nonlocal Timoshenko beam theory [ J ]. Journal of Engineering Mechanics, 134 ( 6 ), 2008: 475 481.
  • 6Ke L L, Xiang Y, Yang J. Nonlinear free vibration of embedded double-walled carbon nanotubes based on nonlocal Timoshenko beam theory [ J ]. Computational Materials Science ,2009,47:409 - 417.
  • 7Yang J, Ke L L, Kitipomchai S. Nonlinear free vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory [J]. Physica E ,2010,42:1727 - 1735.
  • 8Pradhan S C, Murmu T. Application of nonlocal elasticity and DQM in the flapwise bending vibration of a rotating nanocantilever[J]. Physica E,2010,42:1944 -1949.
  • 9Wang C M, Zhang Y Y, Kitipornchai S. Vibration of initially stressed micro and nano-beams [ J ]. International Journal of Structural Stability and Dynamics, 2007,7 (4) : 555 -570.
  • 10Evoy S. Carr D W. et al. Nanofabrication and electron static operation of single crystal silicon paddle oscillators [ J ]. Journal of Applied Physics, 1999, 86 : 6072 - 607.

共引文献28

同被引文献22

引证文献7

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部