摘要
采用多尺度方法对平纹机织复合材料低速冲击损伤进行了数值模拟。建立E玻璃纤维束的微观单胞模型,计算出纤维束的等效刚度和强度;然后建立平纹机织复合材料的细观单胞模型,并基于连续损伤力学模型和三维Hashin失效准则对细观模型进行损伤演化模拟;提出一种新的基于体积平均法的局部均匀化方法,将细观模型转化为含有0°和90°单层的等效交叉层合板(ECPL)模型,同时将建立的ECPL模型扩展成宏观模型并对其低速冲击损伤进行数值模拟,得出冲击能量为30 J下平纹机织复合材料的力位移曲线及能量曲线并与文献中的试验结果进行了对比。结果表明,由于层合板未发生穿孔破坏,力和位移均呈现先增大后减小的趋势,数值模拟峰值力为5621 N,与试验值误差为1.3%;并且层合板失效形式主要为纤维和基体拉伸损伤及层间分层损伤。宏观ECPL低速冲击模型的数值与试验结果吻合较好,验证了局部均匀化方法和多尺度模型的有效性。
In this work,a multi-scale approach has been proposed to investigate the low-velocity impact damage of plain woven composites.First,the microscale representative volume element(RVE)was established to predict the effective properties of E-glass yarns.Second,the mesoscale RVE of the plain woven composites was constructed and the damage evolution of the mesoscale RVE was analyzed based on a continuous damage mechanics(CDM)model and the 3D Hashin failure criterion.Finally,a new local homogenization method based on the volume averaging method was proposed,which transforms the mesoscale model into the equivalent cross ply laminate(ECPL)model with 0°and 90°layers.The ECPL model was extended to a macroscale model,and low-velocity impact simulations have been performed to investigate the damage behaviors of plain woven composites.The force-displacement and energy curves of plain woven composites with impact energy of 30 J were obtained and compared with experimental results in literature.The results show that the numerical simulation peak force is 5621 N,the deviation from the experimental value is 1.3%;Moreover,the failure modes within laminates are mainly fiber and matrix tensile damages and delamination.The numerical results of the low-velocity impact model based on the ECPL approach are in good agreement with the experimental results,which validates the local homogenization approach and the multi-scale modeling strategy.
作者
王涛
侯玉亮
铁瑛
李成
WANG Tao;HOU Yuliang;TIE Ying;LI Cheng(School of Mechanical and Power Engineering,Zhengzhou University,Zhengzhou 450001,China)
出处
《振动与冲击》
EI
CSCD
北大核心
2020年第20期295-304,共10页
Journal of Vibration and Shock
基金
国家自然科学基金民航联合基金培育项目(U1833116)
国家博士后科学基金面上资助项目(2018M642775)
河南省等学校重点科研项(20A460003)。