摘要
Principal component analysis(PCA)is a widely used method for multivariate data analysis that projects the original high-dimensional data onto a low-dimensional subspace with maximum variance.However,in practice,we would be more likely to obtain a few compressed sensing(CS)measurements than the complete high-dimensional data due to the high cost of data acquisition and storage.In this paper,we propose a novel Bayesian algorithm for learning the solutions of PCA for the original data just from these CS measurements.To this end,we utilize a generative latent variable model incorporated with a structure prior to model both sparsity of the original data and effective dimensionality of the latent space.The proposed algorithm enjoys two important advantages:1)The effective dimensionality of the latent space can be determined automatically with no need to be pre-specified;2)The sparsity modeling makes us unnecessary to employ multiple measurement matrices to maintain the original data space but a single one,thus being storage efficient.Experimental results on synthetic and real-world datasets show that the proposed algorithm can accurately learn the solutions of PCA for the original data,which can in turn be applied in reconstruction task with favorable results.
基金
This work was supported by the Key Program of the National Natural Science Foundation of China(NSFC)(Grant No.61732006).