期刊文献+

Recent advances of neural text generation:Core tasks,datasets,models and challenges 被引量:2

原文传递
导出
摘要 In recent years,deep neural network has achieved great success in solving many natural language processing tasks.Particularly,substantial progress has been made on neural text generation,which takes the linguistic and non-linguistic input,and generates natural language text.This survey aims to provide an up-to-date synthesis of core tasks in neural text generation and the architectures adopted to handle these tasks,and draw attention to the challenges in neural text generation.We first outline the mainstream neural text generation frameworks,and then introduce datasets,advanced models and challenges of four core text generation tasks in detail,including AMR-to-text generation,data-to-text generation,and two text-to-text generation tasks(i.e.,text summarization and paraphrase generation).Finally,we present future research directions for neural text generation.This survey can be used as a guide and reference for researchers and practitioners in this area.
出处 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2020年第10期1990-2010,共21页 中国科学(技术科学英文版)
基金 the National Natural Science Foundation of China(Grant No.61772036) the Key Laboratory of Science,Technology and Standard in Press Industry(Key Laboratory of Intelligent Press Media Technology)。
  • 相关文献

同被引文献32

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部