期刊文献+

LMD与优化OMP算法的滚动轴承故障诊断方法研究 被引量:4

Study on Fault Diagnosis Method of Rolling Bearing Based on LMD and Optimized OMP Algorithm
下载PDF
导出
摘要 针对K-SVD算法在构建字典时字典原子易受噪声干扰混入虚假原子,正交匹配追踪(OMP)算法不易区分相似原子以及迭代终止条件难以确定问题,提出一种基于局部均值分解(LMD)与优化OMP算法的故障特征提取模型。该模型首先采用LMD算法分解信号,根据皮尔逊相关系数法选取最优PF分量作为样本信号构建字典;然后在OMP算法基础上引入Jaccard系数和峭度最大准则,解出稀疏系数并重构信号;最后进行仿真和实验数据分析。结果表明,基于LMD与优化OMP的故障特征提取模型对滚动轴承故障特征提取效果有改善。 Aiming at the fact that dictionary atoms in the K-SVD algorithm are susceptible to noise and mixed with false atoms when constructing a dictionary,the Orthogonal Matching Pursuit(OMP)algorithm is difficult to distinguish similar atoms and the iteration termination condition is difficult to determine,a new fault feature extraction model based on local mean decomposition and OMP algorithm is proposed.The model first uses the LMD algorithm to decompose the signals,and selects the optimal PF component as a sample signal to construct a dictionary according to the Pearson correlation coefficient method.Then based on the OMP algorithm,Jaccard coefficient and kurtosis maximum criterion are introduced to solve the sparse coefficient and reconstruct the signal.Finally,simulation and experimental data analysis is performed.The results show that the fault feature extraction model based on LMD and optimized OMP has improved the fault feature extraction effect of rolling bearings.
作者 魏永合 聂晨 李宏林 WEI Yonghe;NIE Chen;LI Honglin(Shenyang Ligong University,Shenyang 110159,China)
机构地区 沈阳理工大学
出处 《沈阳理工大学学报》 CAS 2020年第3期61-66,70,共7页 Journal of Shenyang Ligong University
基金 辽宁省科技攻关计划项目(2013220022)。
关键词 稀疏表示 局部均值分解(LMD) 正交匹配追踪(OMP) 特征提取 sparse representation local mean decomposition(LMD) orthogonal matching pursuit(OMP) feature extraction
  • 相关文献

参考文献10

二级参考文献93

  • 1范虹,孟庆丰,张优云,冯武卫,高强.基于改进匹配追踪算法的特征提取及其应用[J].机械工程学报,2007,43(7):115-119. 被引量:14
  • 2Nikolaou N G, Antoniadis I A. Demodulation of vibration signals generated by defects in rolling element bearings using complex shifted Morlet wavelets[J]. Mechanical Systems and Signal Processing,2002,16(4):677-694.
  • 3Yiakopoulos C T, Antoniadis I A. Wavelet based demodulation of vibration signals generated by defects in rolling element bearings[J]. Shock and Vibration,2002,9(2002):293-306.
  • 4A.Parey,M.E.Guillet,N.Tandon,Dynamic modeling of spur gear pair and application of empirical mode decomposition-based statistical analysis for early detection of localized tooth defect,journal of Sound and Vibration 294(3)(2006):547-561.
  • 5Junsheng Cheng,Dejie Yu,Yu Yang. The application of energy operator demodulation approach based on EMD in machinery fault diagnosis. Mechanical Systems and Signal Processing 21(2007):668-677.
  • 6R.F.Dwyer,Detection of Non-gaussian Signals by Frequency Domain Kurtosis Estimation[C].Int.Conf. Accoustic,Speech,and Signal Processing,Boston 1983:607-610.
  • 7Antoni J. The spectral kurtosis: a useful tool for characterizing non-stationary signals[J]. Mechanical Systems and Signal Processing, 2006(20):282-307.
  • 8Antoni J. Fast computation of kurtogram for the detection of transient faults[J]. Mechanical Systems and Signal Processing, 2007(21):108-124.
  • 9Jonathan S. Smith. The local mean decomposition and its application to EEG perception data[J]. Journal of the Royal Society Interface, 2005,2(5):443-454.
  • 10Yu Yang, Yigang He, Junsheng Cheng, et al. A gear fault diagnosis using Hilbert spectrum based on MODWPT and a comparison with EMD approach[J]. Measurement,2009,42:542-551.

共引文献182

同被引文献38

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部