摘要
利用权函数方法,讨论了非齐次核K(x,y)=φλ(xλ1yλ2)φ′(xλ1yλ2)的Hilbert型积分不等式成立的等价参数条件及最佳常数因子,得到了构建此类Hilbert型不等式的充分必要条件及最佳常数因子的表达公式;对一些具体的非齐次核,得到了若干具有最佳常数因子的新的Hilbert型不等式;最后,讨论了相应奇异积分算子的有界性及其范数.
Using the weight function methods,the equivalent parameter conditions for the validity of Hilbert-type integral inequalities with non-homogeneous kernel K(x,y)=φλ(xλ1yλ2)φ′(xλ1yλ2)and the best constant factor are discussed.The necessary and sufficient conditions for constructing such Hilbert-type inequalities and the formula for expressing the best constant factor are obtained.Many new Hilbert-type integral inequalities with some specific non-homogeneous kernels and the best constant factors are also obtained.Finally,the norm and boundedness of corresponding singular integral operators are discussed.
作者
洪勇
陈强
HONG Yong;CHEN Qiang(Department of Mathematics, Guangdong Baiyun University, Guangzhou 510450, China;Department of Computer Science, Guangdong University of Education, Guangzhou 510303, China)
出处
《华南师范大学学报(自然科学版)》
CAS
北大核心
2020年第5期124-128,共5页
Journal of South China Normal University(Natural Science Edition)
基金
国家自然科学基金项目(61640222)。
关键词
非齐次核
HILBERT型积分不等式
等价参数条件
有界算子
算子范数
non-homogeneous kernel
Hilbert-type integral inequality
equivalent parameter condition
bounded operator
operator norm