期刊文献+

齿轮机构非线性振动可靠性分析的多点穿越方法研究 被引量:1

Multi-crossing method for nonlinear vibration reliability analysis of gear sets
下载PDF
导出
摘要 齿轮机构的非线性振动是造成机械产品故障的主要原因之一。考虑多种随机因素的影响,定量分析齿轮非线性振动的可靠性具有较高的工程实用价值。首先,采用系统性观点给出齿轮非线性振动可靠性的定义,提出齿轮非线性振动可靠性分析的系统框架;然后,在假设齿轮非线性振动响应服从稳态随机过程的前提下,提出齿轮非线性振动可靠性分析的解析方法;结合首次穿越理论及蒙特卡罗仿真技术,提出多点穿越蒙特卡罗仿真分析方法,避免了解析方法中齿轮非线性振动响应服从稳态随机过程的假设;最后,通过案例分析说明所提仿真方法的合理性及工程适用性。 The nonlinear vibration of gear sets is one of the main causes of mechanical failure.Considering the influence of various random factors,the quantitative analysis of the nonlinear vibration reliability of gear sets has significant practical value in engineering.Firstly,the definition of gear nonlinear vibration reliability was given from a systematic point of view,and the system framework of gear nonlinear vibration reliability analysis was put forward.Then,on the premise that the gear nonlinear vibration response obeys the steady state random process,the analytical method of gear nonlinear vibration reliability analysis was proposed.Furthermore,combined with the first-passage theory and Monte Carlo simulation technology,a multi-crossing Monte Carlo simulation method was proposed to avoid the assumption that the gear nonlinear vibration response was subject to steady state random process in the analytical method.Finally,the rationality and engineering applicability of the proposed simulation method were illustrated by a case study.
作者 宋武强 程登良 Song Wuqiang;Cheng Dengliang(Department of Mechanical and Automotive Engineering,Henan Forestry Vocational College,Luoyang 471000,Henan,China;School of Electrical and Information Engineering,Hubei University of Automotive Technology,Shiyan 442002,Hubei,China)
出处 《现代制造工程》 CSCD 北大核心 2020年第10期13-17,25,共6页 Modern Manufacturing Engineering
基金 国家自然科学基金项目(61701046) 湖北省高等学校省级教学研究项目(015344)。
关键词 齿轮机构 非线性振动 多点穿越 可靠性仿真 gear sets nonlinear vibration multi-crossing reliability simulation
  • 相关文献

参考文献3

二级参考文献22

  • 1Huang K J, Liu T S. Dynamic analysis of a spur gear by the dynamic stiffness method [ J] . Journal of Sound and Vibration, 2000,234(2):311- 329.
  • 2Bonori G, Barbieri M, Pellicano F. Optimum profile modifications of spur gears by means of genetic algorithms[J].Journal of Sound and Vibration, 2008, 313:603 -616.
  • 3Theodossiades S. Non-linear dynamics of gear-pair systems with periodic stiffness and backlash [J].Journal of Sounal and Vibration, 2000,229(2) :287 -310.
  • 4Shyyaba A, Kahraman A. Non-linear dynamic analysis of a multi-mesh gear train using multi-tern1 harmonic balance method: sub-harmonic motions [ J ]. Journal of Sound and Vibration, 2005,279:417 -451.
  • 5Beck A T, Melchers R E. On the ensemble crossing rate approach to time variant reliability analysis of uncertain structures[J ]. Probabilistic Engineering Mechanics, 2004, 19:9- 19.
  • 6Hosseini S A A, Khadem S E. Vibration and reliability of a rotating beam with random properties under random excitation [J]. Mechanical Science, 2007,49:1377- 1388.
  • 7Haym B, Seon M H. Probability models in engineering and scienceIM]. Boca Raton: CRC Press, 2005.
  • 8Yuan Z, Sun Z L. Study on numerical identification of the nonlinear chaotic vibration of a gear pair [ C ]//Proceeding of 15th ISSAT International Conference on Reliability and Quality in Design. San Francisco, 2009 : 234- 237.
  • 9Zhang Y M, Liu Q L, Wen B C. Practical reliability-based designd gear pairsIJ]. Mechanism and Machine Theory, 2003,38(12) :1363 - 1370.
  • 10Peng X Q, Liu G, Wu L Y, et al. A stochastic finite element method for fatigue reliability analysis of gear teeth subjected to bending[J]. Computational Mechanics, 1998, 21(3) :253 - 261.

共引文献10

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部